Metamath Proof Explorer


Theorem nic-isw1

Description: Inference version of nic-swap . (Contributed by Jeff Hoffman, 17-Nov-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis nic-isw1.1
|- ( th -/\ ph )
Assertion nic-isw1
|- ( ph -/\ th )

Proof

Step Hyp Ref Expression
1 nic-isw1.1
 |-  ( th -/\ ph )
2 nic-swap
 |-  ( ( th -/\ ph ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) )
3 1 2 nic-mp
 |-  ( ph -/\ th )