Metamath Proof Explorer


Theorem nic-swap

Description: The connector -/\ is symmetric. (Contributed by Jeff Hoffman, 17-Nov-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nic-swap
|- ( ( th -/\ ph ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) )

Proof

Step Hyp Ref Expression
1 nic-id
 |-  ( ph -/\ ( ph -/\ ph ) )
2 nic-ax
 |-  ( ( ph -/\ ( ph -/\ ph ) ) -/\ ( ( ta -/\ ( ta -/\ ta ) ) -/\ ( ( th -/\ ph ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) )
3 1 2 nic-mp
 |-  ( ( th -/\ ph ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) )