Metamath Proof Explorer
Description: The connector -/\ is symmetric. (Contributed by Jeff Hoffman, 17-Nov-2007) (Proof modification is discouraged.)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
nic-swap |
⊢ ( ( 𝜃 ⊼ 𝜑 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nic-id |
⊢ ( 𝜑 ⊼ ( 𝜑 ⊼ 𝜑 ) ) |
2 |
|
nic-ax |
⊢ ( ( 𝜑 ⊼ ( 𝜑 ⊼ 𝜑 ) ) ⊼ ( ( 𝜏 ⊼ ( 𝜏 ⊼ 𝜏 ) ) ⊼ ( ( 𝜃 ⊼ 𝜑 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) ) ) |
3 |
1 2
|
nic-mp |
⊢ ( ( 𝜃 ⊼ 𝜑 ) ⊼ ( ( 𝜑 ⊼ 𝜃 ) ⊼ ( 𝜑 ⊼ 𝜃 ) ) ) |