Metamath Proof Explorer


Theorem nic-swap

Description: The connector -/\ is symmetric. (Contributed by Jeff Hoffman, 17-Nov-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nic-swap ( ( 𝜃𝜑 ) ⊼ ( ( 𝜑𝜃 ) ⊼ ( 𝜑𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 nic-id ( 𝜑 ⊼ ( 𝜑𝜑 ) )
2 nic-ax ( ( 𝜑 ⊼ ( 𝜑𝜑 ) ) ⊼ ( ( 𝜏 ⊼ ( 𝜏𝜏 ) ) ⊼ ( ( 𝜃𝜑 ) ⊼ ( ( 𝜑𝜃 ) ⊼ ( 𝜑𝜃 ) ) ) ) )
3 1 2 nic-mp ( ( 𝜃𝜑 ) ⊼ ( ( 𝜑𝜃 ) ⊼ ( 𝜑𝜃 ) ) )