Metamath Proof Explorer


Theorem nic-id

Description: Theorem id expressed with -/\ . (Contributed by Jeff Hoffman, 17-Nov-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nic-id ( 𝜏 ⊼ ( 𝜏𝜏 ) )

Proof

Step Hyp Ref Expression
1 nic-ax ( ( 𝜓 ⊼ ( 𝜓𝜓 ) ) ⊼ ( ( 𝜃 ⊼ ( 𝜃𝜃 ) ) ⊼ ( ( 𝜑𝜓 ) ⊼ ( ( 𝜓𝜑 ) ⊼ ( 𝜓𝜑 ) ) ) ) )
2 1 nic-idlem2 ( ( ( ( 𝜑𝜓 ) ⊼ ( ( 𝜓𝜑 ) ⊼ ( 𝜓𝜑 ) ) ) ⊼ ( 𝜒 ⊼ ( 𝜒𝜒 ) ) ) ⊼ ( 𝜓 ⊼ ( 𝜓𝜓 ) ) )
3 nic-idlem1 ( ( ( 𝜒 ⊼ ( 𝜒𝜒 ) ) ⊼ ( 𝜏 ⊼ ( 𝜏𝜏 ) ) ) ⊼ ( ( ( ( 𝜑𝜓 ) ⊼ ( ( 𝜓𝜑 ) ⊼ ( 𝜓𝜑 ) ) ) ⊼ ( 𝜒 ⊼ ( 𝜒𝜒 ) ) ) ⊼ ( ( ( 𝜑𝜓 ) ⊼ ( ( 𝜓𝜑 ) ⊼ ( 𝜓𝜑 ) ) ) ⊼ ( 𝜒 ⊼ ( 𝜒𝜒 ) ) ) ) )
4 3 nic-idlem2 ( ( ( ( ( 𝜑𝜓 ) ⊼ ( ( 𝜓𝜑 ) ⊼ ( 𝜓𝜑 ) ) ) ⊼ ( 𝜒 ⊼ ( 𝜒𝜒 ) ) ) ⊼ ( 𝜓 ⊼ ( 𝜓𝜓 ) ) ) ⊼ ( ( 𝜒 ⊼ ( 𝜒𝜒 ) ) ⊼ ( 𝜏 ⊼ ( 𝜏𝜏 ) ) ) )
5 2 4 nic-mp ( 𝜏 ⊼ ( 𝜏𝜏 ) )