Metamath Proof Explorer
		
		
		
		Description:  Lemma for nic-id .  (Contributed by Jeff Hoffman, 17-Nov-2007)
     (Proof modification is discouraged.)  (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | nic-idlem1 | ⊢  ( ( 𝜃  ⊼  ( 𝜏  ⊼  ( 𝜏  ⊼  𝜏 ) ) )  ⊼  ( ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜓 ) )  ⊼  𝜃 )  ⊼  ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜓 ) )  ⊼  𝜃 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nic-ax | ⊢ ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜓 ) )  ⊼  ( ( 𝜏  ⊼  ( 𝜏  ⊼  𝜏 ) )  ⊼  ( ( 𝜑  ⊼  𝜒 )  ⊼  ( ( 𝜑  ⊼  𝜑 )  ⊼  ( 𝜑  ⊼  𝜑 ) ) ) ) ) | 
						
							| 2 | 1 | nic-imp | ⊢ ( ( 𝜃  ⊼  ( 𝜏  ⊼  ( 𝜏  ⊼  𝜏 ) ) )  ⊼  ( ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜓 ) )  ⊼  𝜃 )  ⊼  ( ( 𝜑  ⊼  ( 𝜒  ⊼  𝜓 ) )  ⊼  𝜃 ) ) ) |