Metamath Proof Explorer


Theorem nic-idlem1

Description: Lemma for nic-id . (Contributed by Jeff Hoffman, 17-Nov-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nic-idlem1 ( ( 𝜃 ⊼ ( 𝜏 ⊼ ( 𝜏𝜏 ) ) ) ⊼ ( ( ( 𝜑 ⊼ ( 𝜒𝜓 ) ) ⊼ 𝜃 ) ⊼ ( ( 𝜑 ⊼ ( 𝜒𝜓 ) ) ⊼ 𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 nic-ax ( ( 𝜑 ⊼ ( 𝜒𝜓 ) ) ⊼ ( ( 𝜏 ⊼ ( 𝜏𝜏 ) ) ⊼ ( ( 𝜑𝜒 ) ⊼ ( ( 𝜑𝜑 ) ⊼ ( 𝜑𝜑 ) ) ) ) )
2 1 nic-imp ( ( 𝜃 ⊼ ( 𝜏 ⊼ ( 𝜏𝜏 ) ) ) ⊼ ( ( ( 𝜑 ⊼ ( 𝜒𝜓 ) ) ⊼ 𝜃 ) ⊼ ( ( 𝜑 ⊼ ( 𝜒𝜓 ) ) ⊼ 𝜃 ) ) )