Metamath Proof Explorer
Description: Lemma for nic-id . (Contributed by Jeff Hoffman, 17-Nov-2007)
(Proof modification is discouraged.) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
nic-idlem1 |
⊢ ( ( 𝜃 ⊼ ( 𝜏 ⊼ ( 𝜏 ⊼ 𝜏 ) ) ) ⊼ ( ( ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) ⊼ 𝜃 ) ⊼ ( ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) ⊼ 𝜃 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nic-ax |
⊢ ( ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) ⊼ ( ( 𝜏 ⊼ ( 𝜏 ⊼ 𝜏 ) ) ⊼ ( ( 𝜑 ⊼ 𝜒 ) ⊼ ( ( 𝜑 ⊼ 𝜑 ) ⊼ ( 𝜑 ⊼ 𝜑 ) ) ) ) ) |
2 |
1
|
nic-imp |
⊢ ( ( 𝜃 ⊼ ( 𝜏 ⊼ ( 𝜏 ⊼ 𝜏 ) ) ) ⊼ ( ( ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) ⊼ 𝜃 ) ⊼ ( ( 𝜑 ⊼ ( 𝜒 ⊼ 𝜓 ) ) ⊼ 𝜃 ) ) ) |