Metamath Proof Explorer


Theorem nic-idlem1

Description: Lemma for nic-id . (Contributed by Jeff Hoffman, 17-Nov-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nic-idlem1
|- ( ( th -/\ ( ta -/\ ( ta -/\ ta ) ) ) -/\ ( ( ( ph -/\ ( ch -/\ ps ) ) -/\ th ) -/\ ( ( ph -/\ ( ch -/\ ps ) ) -/\ th ) ) )

Proof

Step Hyp Ref Expression
1 nic-ax
 |-  ( ( ph -/\ ( ch -/\ ps ) ) -/\ ( ( ta -/\ ( ta -/\ ta ) ) -/\ ( ( ph -/\ ch ) -/\ ( ( ph -/\ ph ) -/\ ( ph -/\ ph ) ) ) ) )
2 1 nic-imp
 |-  ( ( th -/\ ( ta -/\ ( ta -/\ ta ) ) ) -/\ ( ( ( ph -/\ ( ch -/\ ps ) ) -/\ th ) -/\ ( ( ph -/\ ( ch -/\ ps ) ) -/\ th ) ) )