Metamath Proof Explorer


Theorem nic-imp

Description: Inference for nic-mp using nic-ax as major premise. (Contributed by Jeff Hoffman, 17-Nov-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis nic-imp.1
|- ( ph -/\ ( ch -/\ ps ) )
Assertion nic-imp
|- ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) )

Proof

Step Hyp Ref Expression
1 nic-imp.1
 |-  ( ph -/\ ( ch -/\ ps ) )
2 nic-ax
 |-  ( ( ph -/\ ( ch -/\ ps ) ) -/\ ( ( ta -/\ ( ta -/\ ta ) ) -/\ ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) ) ) )
3 1 2 nic-mp
 |-  ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) )