Metamath Proof Explorer


Theorem nic-isw2

Description: Inference for swapping nested terms. (Contributed by Jeff Hoffman, 17-Nov-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis nic-isw2.1
|- ( ps -/\ ( th -/\ ph ) )
Assertion nic-isw2
|- ( ps -/\ ( ph -/\ th ) )

Proof

Step Hyp Ref Expression
1 nic-isw2.1
 |-  ( ps -/\ ( th -/\ ph ) )
2 nic-swap
 |-  ( ( ph -/\ th ) -/\ ( ( th -/\ ph ) -/\ ( th -/\ ph ) ) )
3 2 nic-imp
 |-  ( ( ps -/\ ( th -/\ ph ) ) -/\ ( ( ( ph -/\ th ) -/\ ps ) -/\ ( ( ph -/\ th ) -/\ ps ) ) )
4 1 3 nic-mp
 |-  ( ( ph -/\ th ) -/\ ps )
5 4 nic-isw1
 |-  ( ps -/\ ( ph -/\ th ) )