Metamath Proof Explorer


Theorem nic-iimp1

Description: Inference version of nic-imp using right-handed term. (Contributed by Jeff Hoffman, 17-Nov-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses nic-iimp1.1
|- ( ph -/\ ( ch -/\ ps ) )
nic-iimp1.2
|- ( th -/\ ch )
Assertion nic-iimp1
|- ( th -/\ ph )

Proof

Step Hyp Ref Expression
1 nic-iimp1.1
 |-  ( ph -/\ ( ch -/\ ps ) )
2 nic-iimp1.2
 |-  ( th -/\ ch )
3 1 nic-imp
 |-  ( ( th -/\ ch ) -/\ ( ( ph -/\ th ) -/\ ( ph -/\ th ) ) )
4 2 3 nic-mp
 |-  ( ph -/\ th )
5 4 nic-isw1
 |-  ( th -/\ ph )