Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Other axiomatizations related to classical propositional calculus
Derive the Lukasiewicz axioms from Nicod's axiom
nic-isw2
Metamath Proof Explorer
Description: Inference for swapping nested terms. (Contributed by Jeff Hoffman , 17-Nov-2007) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypothesis
nic-isw2.1
⊢ ψ ⊼ θ ⊼ φ
Assertion
nic-isw2
⊢ ψ ⊼ φ ⊼ θ
Proof
Step
Hyp
Ref
Expression
1
nic-isw2.1
⊢ ψ ⊼ θ ⊼ φ
2
nic-swap
⊢ φ ⊼ θ ⊼ θ ⊼ φ ⊼ θ ⊼ φ
3
2
nic-imp
⊢ ψ ⊼ θ ⊼ φ ⊼ φ ⊼ θ ⊼ ψ ⊼ φ ⊼ θ ⊼ ψ
4
1 3
nic-mp
⊢ φ ⊼ θ ⊼ ψ
5
4
nic-isw1
⊢ ψ ⊼ φ ⊼ θ