Metamath Proof Explorer


Theorem nic-isw2

Description: Inference for swapping nested terms. (Contributed by Jeff Hoffman, 17-Nov-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis nic-isw2.1 ψ θ φ
Assertion nic-isw2 ψ φ θ

Proof

Step Hyp Ref Expression
1 nic-isw2.1 ψ θ φ
2 nic-swap φ θ θ φ θ φ
3 2 nic-imp ψ θ φ φ θ ψ φ θ ψ
4 1 3 nic-mp φ θ ψ
5 4 nic-isw1 ψ φ θ