Database CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY Other axiomatizations related to classical propositional calculus Derive the Lukasiewicz axioms from Nicod's axiom nic-isw2  
				
		 
		
			
		 
		Description:   Inference for swapping nested terms.  (Contributed by Jeff Hoffman , 17-Nov-2007)   (Proof modification is discouraged.) 
       (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypothesis 
						nic-isw2.1 ⊢  ( 𝜓   ⊼  ( 𝜃   ⊼  𝜑  ) )  
				
					Assertion 
					nic-isw2 ⊢   ( 𝜓   ⊼  ( 𝜑   ⊼  𝜃  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							nic-isw2.1 ⊢  ( 𝜓   ⊼  ( 𝜃   ⊼  𝜑  ) )  
						
							2 
								
							 
							nic-swap ⊢  ( ( 𝜑   ⊼  𝜃  )  ⊼  ( ( 𝜃   ⊼  𝜑  )  ⊼  ( 𝜃   ⊼  𝜑  ) ) )  
						
							3 
								2 
							 
							nic-imp ⊢  ( ( 𝜓   ⊼  ( 𝜃   ⊼  𝜑  ) )  ⊼  ( ( ( 𝜑   ⊼  𝜃  )  ⊼  𝜓  )  ⊼  ( ( 𝜑   ⊼  𝜃  )  ⊼  𝜓  ) ) )  
						
							4 
								1  3 
							 
							nic-mp ⊢  ( ( 𝜑   ⊼  𝜃  )  ⊼  𝜓  )  
						
							5 
								4 
							 
							nic-isw1 ⊢  ( 𝜓   ⊼  ( 𝜑   ⊼  𝜃  ) )