Metamath Proof Explorer
Description: 'Not less than or equal to' implies 'grater than'. (Contributed by Glauco Siliprandi, 2-Jan-2022)
|
|
Ref |
Expression |
|
Hypotheses |
nleltd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
nleltd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
nleltd.3 |
⊢ ( 𝜑 → ¬ 𝐵 ≤ 𝐴 ) |
|
Assertion |
nleltd |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nleltd.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
nleltd.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
nleltd.3 |
⊢ ( 𝜑 → ¬ 𝐵 ≤ 𝐴 ) |
4 |
1 2
|
ltnled |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴 ) ) |
5 |
3 4
|
mpbird |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |