Metamath Proof Explorer


Theorem nleltd

Description: 'Not less than or equal to' implies 'grater than'. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses nleltd.1 ( 𝜑𝐴 ∈ ℝ )
nleltd.2 ( 𝜑𝐵 ∈ ℝ )
nleltd.3 ( 𝜑 → ¬ 𝐵𝐴 )
Assertion nleltd ( 𝜑𝐴 < 𝐵 )

Proof

Step Hyp Ref Expression
1 nleltd.1 ( 𝜑𝐴 ∈ ℝ )
2 nleltd.2 ( 𝜑𝐵 ∈ ℝ )
3 nleltd.3 ( 𝜑 → ¬ 𝐵𝐴 )
4 1 2 ltnled ( 𝜑 → ( 𝐴 < 𝐵 ↔ ¬ 𝐵𝐴 ) )
5 3 4 mpbird ( 𝜑𝐴 < 𝐵 )