| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmofval.1 |
⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) |
| 2 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 3 |
|
eqid |
⊢ ( norm ‘ 𝑆 ) = ( norm ‘ 𝑆 ) |
| 4 |
|
eqid |
⊢ ( norm ‘ 𝑇 ) = ( norm ‘ 𝑇 ) |
| 5 |
1 2 3 4
|
nmofval |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → 𝑁 = ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) } , ℝ* , < ) ) ) |
| 6 |
|
ssrab2 |
⊢ { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) } ⊆ ( 0 [,) +∞ ) |
| 7 |
|
icossxr |
⊢ ( 0 [,) +∞ ) ⊆ ℝ* |
| 8 |
6 7
|
sstri |
⊢ { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) } ⊆ ℝ* |
| 9 |
|
infxrcl |
⊢ ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) } ⊆ ℝ* → inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) } , ℝ* , < ) ∈ ℝ* ) |
| 10 |
8 9
|
mp1i |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ∧ 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ) → inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑆 ) ( ( norm ‘ 𝑇 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑆 ) ‘ 𝑥 ) ) } , ℝ* , < ) ∈ ℝ* ) |
| 11 |
5 10
|
fmpt3d |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → 𝑁 : ( 𝑆 GrpHom 𝑇 ) ⟶ ℝ* ) |