| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmoleub2.n |
⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) |
| 2 |
|
nmoleub2.v |
⊢ 𝑉 = ( Base ‘ 𝑆 ) |
| 3 |
|
nmoleub2.l |
⊢ 𝐿 = ( norm ‘ 𝑆 ) |
| 4 |
|
nmoleub2.m |
⊢ 𝑀 = ( norm ‘ 𝑇 ) |
| 5 |
|
nmoleub2.g |
⊢ 𝐺 = ( Scalar ‘ 𝑆 ) |
| 6 |
|
nmoleub2.w |
⊢ 𝐾 = ( Base ‘ 𝐺 ) |
| 7 |
|
nmoleub2.s |
⊢ ( 𝜑 → 𝑆 ∈ ( NrmMod ∩ ℂMod ) ) |
| 8 |
|
nmoleub2.t |
⊢ ( 𝜑 → 𝑇 ∈ ( NrmMod ∩ ℂMod ) ) |
| 9 |
|
nmoleub2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
| 10 |
|
nmoleub2.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 11 |
|
nmoleub2.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
| 12 |
|
nmoleub2a.5 |
⊢ ( 𝜑 → ℚ ⊆ 𝐾 ) |
| 13 |
|
idd |
⊢ ( ( ( 𝐿 ‘ 𝑥 ) ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 → ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) |
| 14 |
|
ltle |
⊢ ( ( ( 𝐿 ‘ 𝑥 ) ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( ( 𝐿 ‘ 𝑥 ) < 𝑅 → ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) |
| 15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
nmoleub2lem2 |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |