| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmoleub2.n | ⊢ 𝑁  =  ( 𝑆  normOp  𝑇 ) | 
						
							| 2 |  | nmoleub2.v | ⊢ 𝑉  =  ( Base ‘ 𝑆 ) | 
						
							| 3 |  | nmoleub2.l | ⊢ 𝐿  =  ( norm ‘ 𝑆 ) | 
						
							| 4 |  | nmoleub2.m | ⊢ 𝑀  =  ( norm ‘ 𝑇 ) | 
						
							| 5 |  | nmoleub2.g | ⊢ 𝐺  =  ( Scalar ‘ 𝑆 ) | 
						
							| 6 |  | nmoleub2.w | ⊢ 𝐾  =  ( Base ‘ 𝐺 ) | 
						
							| 7 |  | nmoleub2.s | ⊢ ( 𝜑  →  𝑆  ∈  ( NrmMod  ∩  ℂMod ) ) | 
						
							| 8 |  | nmoleub2.t | ⊢ ( 𝜑  →  𝑇  ∈  ( NrmMod  ∩  ℂMod ) ) | 
						
							| 9 |  | nmoleub2.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) ) | 
						
							| 10 |  | nmoleub2.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 11 |  | nmoleub2.r | ⊢ ( 𝜑  →  𝑅  ∈  ℝ+ ) | 
						
							| 12 |  | nmoleub2a.5 | ⊢ ( 𝜑  →  ℚ  ⊆  𝐾 ) | 
						
							| 13 |  | ltle | ⊢ ( ( ( 𝐿 ‘ 𝑥 )  ∈  ℝ  ∧  𝑅  ∈  ℝ )  →  ( ( 𝐿 ‘ 𝑥 )  <  𝑅  →  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) ) | 
						
							| 14 |  | idd | ⊢ ( ( ( 𝐿 ‘ 𝑥 )  ∈  ℝ  ∧  𝑅  ∈  ℝ )  →  ( ( 𝐿 ‘ 𝑥 )  <  𝑅  →  ( 𝐿 ‘ 𝑥 )  <  𝑅 ) ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | nmoleub2lem2 | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ 𝐹 )  ≤  𝐴  ↔  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  <  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) ) ) |