| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmoleub2.n | ⊢ 𝑁  =  ( 𝑆  normOp  𝑇 ) | 
						
							| 2 |  | nmoleub2.v | ⊢ 𝑉  =  ( Base ‘ 𝑆 ) | 
						
							| 3 |  | nmoleub2.l | ⊢ 𝐿  =  ( norm ‘ 𝑆 ) | 
						
							| 4 |  | nmoleub2.m | ⊢ 𝑀  =  ( norm ‘ 𝑇 ) | 
						
							| 5 |  | nmoleub2.g | ⊢ 𝐺  =  ( Scalar ‘ 𝑆 ) | 
						
							| 6 |  | nmoleub2.w | ⊢ 𝐾  =  ( Base ‘ 𝐺 ) | 
						
							| 7 |  | nmoleub2.s | ⊢ ( 𝜑  →  𝑆  ∈  ( NrmMod  ∩  ℂMod ) ) | 
						
							| 8 |  | nmoleub2.t | ⊢ ( 𝜑  →  𝑇  ∈  ( NrmMod  ∩  ℂMod ) ) | 
						
							| 9 |  | nmoleub2.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) ) | 
						
							| 10 |  | nmoleub2.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 11 |  | nmoleub2.r | ⊢ ( 𝜑  →  𝑅  ∈  ℝ+ ) | 
						
							| 12 |  | nmoleub3.5 | ⊢ ( 𝜑  →  0  ≤  𝐴 ) | 
						
							| 13 |  | nmoleub3.6 | ⊢ ( 𝜑  →  ℝ  ⊆  𝐾 ) | 
						
							| 14 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  →  0  ≤  𝐴 ) | 
						
							| 15 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) ) | 
						
							| 16 | 13 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ℝ  ⊆  𝐾 ) | 
						
							| 17 | 11 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  𝑅  ∈  ℝ+ ) | 
						
							| 18 | 7 | elin1d | ⊢ ( 𝜑  →  𝑆  ∈  NrmMod ) | 
						
							| 19 | 18 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  𝑆  ∈  NrmMod ) | 
						
							| 20 |  | nlmngp | ⊢ ( 𝑆  ∈  NrmMod  →  𝑆  ∈  NrmGrp ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  𝑆  ∈  NrmGrp ) | 
						
							| 22 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  𝑦  ∈  𝑉 ) | 
						
							| 23 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  𝑦  ≠  ( 0g ‘ 𝑆 ) ) | 
						
							| 24 |  | eqid | ⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 ) | 
						
							| 25 | 2 3 24 | nmrpcl | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) )  →  ( 𝐿 ‘ 𝑦 )  ∈  ℝ+ ) | 
						
							| 26 | 21 22 23 25 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( 𝐿 ‘ 𝑦 )  ∈  ℝ+ ) | 
						
							| 27 | 17 26 | rpdivcld | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) )  ∈  ℝ+ ) | 
						
							| 28 | 27 | rpred | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) )  ∈  ℝ ) | 
						
							| 29 | 16 28 | sseldd | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) )  ∈  𝐾 ) | 
						
							| 30 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑆 )  =  (  ·𝑠  ‘ 𝑆 ) | 
						
							| 31 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑇 )  =  (  ·𝑠  ‘ 𝑇 ) | 
						
							| 32 | 5 6 2 30 31 | lmhmlin | ⊢ ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) )  ∈  𝐾  ∧  𝑦  ∈  𝑉 )  →  ( 𝐹 ‘ ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 33 | 15 29 22 32 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( 𝐹 ‘ ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑆 ) 𝑦 ) )  =  ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 34 | 33 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑆 ) 𝑦 ) ) )  =  ( 𝑀 ‘ ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 35 | 8 | elin1d | ⊢ ( 𝜑  →  𝑇  ∈  NrmMod ) | 
						
							| 36 | 35 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  𝑇  ∈  NrmMod ) | 
						
							| 37 |  | eqid | ⊢ ( Scalar ‘ 𝑇 )  =  ( Scalar ‘ 𝑇 ) | 
						
							| 38 | 5 37 | lmhmsca | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  ( Scalar ‘ 𝑇 )  =  𝐺 ) | 
						
							| 39 | 15 38 | syl | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( Scalar ‘ 𝑇 )  =  𝐺 ) | 
						
							| 40 | 39 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( Base ‘ ( Scalar ‘ 𝑇 ) )  =  ( Base ‘ 𝐺 ) ) | 
						
							| 41 | 40 6 | eqtr4di | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( Base ‘ ( Scalar ‘ 𝑇 ) )  =  𝐾 ) | 
						
							| 42 | 29 41 | eleqtrrd | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) )  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) | 
						
							| 43 |  | eqid | ⊢ ( Base ‘ 𝑇 )  =  ( Base ‘ 𝑇 ) | 
						
							| 44 | 2 43 | lmhmf | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 45 | 15 44 | syl | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 46 | 45 22 | ffvelcdmd | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( Base ‘ 𝑇 ) ) | 
						
							| 47 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑇 ) )  =  ( Base ‘ ( Scalar ‘ 𝑇 ) ) | 
						
							| 48 |  | eqid | ⊢ ( norm ‘ ( Scalar ‘ 𝑇 ) )  =  ( norm ‘ ( Scalar ‘ 𝑇 ) ) | 
						
							| 49 | 43 4 31 37 47 48 | nmvs | ⊢ ( ( 𝑇  ∈  NrmMod  ∧  ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) )  ∈  ( Base ‘ ( Scalar ‘ 𝑇 ) )  ∧  ( 𝐹 ‘ 𝑦 )  ∈  ( Base ‘ 𝑇 ) )  →  ( 𝑀 ‘ ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) )  =  ( ( ( norm ‘ ( Scalar ‘ 𝑇 ) ) ‘ ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) )  ·  ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 50 | 36 42 46 49 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( 𝑀 ‘ ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) )  =  ( ( ( norm ‘ ( Scalar ‘ 𝑇 ) ) ‘ ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) )  ·  ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 51 | 39 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( norm ‘ ( Scalar ‘ 𝑇 ) )  =  ( norm ‘ 𝐺 ) ) | 
						
							| 52 | 51 | fveq1d | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( ( norm ‘ ( Scalar ‘ 𝑇 ) ) ‘ ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) )  =  ( ( norm ‘ 𝐺 ) ‘ ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) ) ) | 
						
							| 53 | 7 | elin2d | ⊢ ( 𝜑  →  𝑆  ∈  ℂMod ) | 
						
							| 54 | 53 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  𝑆  ∈  ℂMod ) | 
						
							| 55 | 5 6 | clmabs | ⊢ ( ( 𝑆  ∈  ℂMod  ∧  ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) )  ∈  𝐾 )  →  ( abs ‘ ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) )  =  ( ( norm ‘ 𝐺 ) ‘ ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) ) ) | 
						
							| 56 | 54 29 55 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( abs ‘ ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) )  =  ( ( norm ‘ 𝐺 ) ‘ ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) ) ) | 
						
							| 57 | 27 | rpge0d | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  0  ≤  ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) ) | 
						
							| 58 | 28 57 | absidd | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( abs ‘ ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) )  =  ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) ) | 
						
							| 59 | 56 58 | eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( ( norm ‘ 𝐺 ) ‘ ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) )  =  ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) ) | 
						
							| 60 | 52 59 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( ( norm ‘ ( Scalar ‘ 𝑇 ) ) ‘ ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) )  =  ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) ) | 
						
							| 61 | 60 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( ( ( norm ‘ ( Scalar ‘ 𝑇 ) ) ‘ ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) )  ·  ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) )  =  ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) )  ·  ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 62 | 34 50 61 | 3eqtrd | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑆 ) 𝑦 ) ) )  =  ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) )  ·  ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) | 
						
							| 63 | 62 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑆 ) 𝑦 ) ) )  /  𝑅 )  =  ( ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) )  ·  ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) )  /  𝑅 ) ) | 
						
							| 64 | 27 | rpcnd | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) )  ∈  ℂ ) | 
						
							| 65 |  | nlmngp | ⊢ ( 𝑇  ∈  NrmMod  →  𝑇  ∈  NrmGrp ) | 
						
							| 66 | 36 65 | syl | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  𝑇  ∈  NrmGrp ) | 
						
							| 67 | 43 4 | nmcl | ⊢ ( ( 𝑇  ∈  NrmGrp  ∧  ( 𝐹 ‘ 𝑦 )  ∈  ( Base ‘ 𝑇 ) )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) )  ∈  ℝ ) | 
						
							| 68 | 66 46 67 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) )  ∈  ℝ ) | 
						
							| 69 | 68 | recnd | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) )  ∈  ℂ ) | 
						
							| 70 | 17 | rpcnd | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  𝑅  ∈  ℂ ) | 
						
							| 71 | 17 | rpne0d | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  𝑅  ≠  0 ) | 
						
							| 72 | 64 69 70 71 | divassd | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) )  ·  ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) )  /  𝑅 )  =  ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) )  ·  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) )  /  𝑅 ) ) ) | 
						
							| 73 | 26 | rpcnd | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( 𝐿 ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 74 | 26 | rpne0d | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( 𝐿 ‘ 𝑦 )  ≠  0 ) | 
						
							| 75 | 69 70 73 71 74 | dmdcand | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) )  ·  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) )  /  𝑅 ) )  =  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) )  /  ( 𝐿 ‘ 𝑦 ) ) ) | 
						
							| 76 | 63 72 75 | 3eqtrd | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑆 ) 𝑦 ) ) )  /  𝑅 )  =  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) )  /  ( 𝐿 ‘ 𝑦 ) ) ) | 
						
							| 77 |  | eqid | ⊢ ( norm ‘ 𝐺 )  =  ( norm ‘ 𝐺 ) | 
						
							| 78 | 2 3 30 5 6 77 | nmvs | ⊢ ( ( 𝑆  ∈  NrmMod  ∧  ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) )  ∈  𝐾  ∧  𝑦  ∈  𝑉 )  →  ( 𝐿 ‘ ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑆 ) 𝑦 ) )  =  ( ( ( norm ‘ 𝐺 ) ‘ ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) )  ·  ( 𝐿 ‘ 𝑦 ) ) ) | 
						
							| 79 | 19 29 22 78 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( 𝐿 ‘ ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑆 ) 𝑦 ) )  =  ( ( ( norm ‘ 𝐺 ) ‘ ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) )  ·  ( 𝐿 ‘ 𝑦 ) ) ) | 
						
							| 80 | 59 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( ( ( norm ‘ 𝐺 ) ‘ ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) )  ·  ( 𝐿 ‘ 𝑦 ) )  =  ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) )  ·  ( 𝐿 ‘ 𝑦 ) ) ) | 
						
							| 81 | 70 73 74 | divcan1d | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) )  ·  ( 𝐿 ‘ 𝑦 ) )  =  𝑅 ) | 
						
							| 82 | 79 80 81 | 3eqtrd | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( 𝐿 ‘ ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑆 ) 𝑦 ) )  =  𝑅 ) | 
						
							| 83 |  | fveqeq2 | ⊢ ( 𝑥  =  ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑆 ) 𝑦 )  →  ( ( 𝐿 ‘ 𝑥 )  =  𝑅  ↔  ( 𝐿 ‘ ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑆 ) 𝑦 ) )  =  𝑅 ) ) | 
						
							| 84 |  | 2fveq3 | ⊢ ( 𝑥  =  ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑆 ) 𝑦 )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑆 ) 𝑦 ) ) ) ) | 
						
							| 85 | 84 | oveq1d | ⊢ ( 𝑥  =  ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑆 ) 𝑦 )  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  =  ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑆 ) 𝑦 ) ) )  /  𝑅 ) ) | 
						
							| 86 | 85 | breq1d | ⊢ ( 𝑥  =  ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑆 ) 𝑦 )  →  ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴  ↔  ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑆 ) 𝑦 ) ) )  /  𝑅 )  ≤  𝐴 ) ) | 
						
							| 87 | 83 86 | imbi12d | ⊢ ( 𝑥  =  ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑆 ) 𝑦 )  →  ( ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 )  ↔  ( ( 𝐿 ‘ ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑆 ) 𝑦 ) )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑆 ) 𝑦 ) ) )  /  𝑅 )  ≤  𝐴 ) ) ) | 
						
							| 88 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) ) | 
						
							| 89 | 2 5 30 6 | clmvscl | ⊢ ( ( 𝑆  ∈  ℂMod  ∧  ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) )  ∈  𝐾  ∧  𝑦  ∈  𝑉 )  →  ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑆 ) 𝑦 )  ∈  𝑉 ) | 
						
							| 90 | 54 29 22 89 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑆 ) 𝑦 )  ∈  𝑉 ) | 
						
							| 91 | 87 88 90 | rspcdva | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( ( 𝐿 ‘ ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑆 ) 𝑦 ) )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑆 ) 𝑦 ) ) )  /  𝑅 )  ≤  𝐴 ) ) | 
						
							| 92 | 82 91 | mpd | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅  /  ( 𝐿 ‘ 𝑦 ) ) (  ·𝑠  ‘ 𝑆 ) 𝑦 ) ) )  /  𝑅 )  ≤  𝐴 ) | 
						
							| 93 | 76 92 | eqbrtrrd | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) )  /  ( 𝐿 ‘ 𝑦 ) )  ≤  𝐴 ) | 
						
							| 94 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 95 | 68 94 26 | ledivmul2d | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) )  /  ( 𝐿 ‘ 𝑦 ) )  ≤  𝐴  ↔  ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑦 ) ) ) ) | 
						
							| 96 | 93 95 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑦 ) ) ) | 
						
							| 97 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  𝑅  ∈  ℝ+ ) | 
						
							| 98 | 97 | rpred | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  𝑅  ∈  ℝ ) | 
						
							| 99 | 98 | leidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  𝑅  ≤  𝑅 ) | 
						
							| 100 |  | breq1 | ⊢ ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝐿 ‘ 𝑥 )  ≤  𝑅  ↔  𝑅  ≤  𝑅 ) ) | 
						
							| 101 | 99 100 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) ) | 
						
							| 102 | 1 2 3 4 5 6 7 8 9 10 11 14 96 101 | nmoleub2lem | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ 𝐹 )  ≤  𝐴  ↔  ∀ 𝑥  ∈  𝑉 ( ( 𝐿 ‘ 𝑥 )  =  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) ) ) |