| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmoleub2.n |
⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) |
| 2 |
|
nmoleub2.v |
⊢ 𝑉 = ( Base ‘ 𝑆 ) |
| 3 |
|
nmoleub2.l |
⊢ 𝐿 = ( norm ‘ 𝑆 ) |
| 4 |
|
nmoleub2.m |
⊢ 𝑀 = ( norm ‘ 𝑇 ) |
| 5 |
|
nmoleub2.g |
⊢ 𝐺 = ( Scalar ‘ 𝑆 ) |
| 6 |
|
nmoleub2.w |
⊢ 𝐾 = ( Base ‘ 𝐺 ) |
| 7 |
|
nmoleub2.s |
⊢ ( 𝜑 → 𝑆 ∈ ( NrmMod ∩ ℂMod ) ) |
| 8 |
|
nmoleub2.t |
⊢ ( 𝜑 → 𝑇 ∈ ( NrmMod ∩ ℂMod ) ) |
| 9 |
|
nmoleub2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
| 10 |
|
nmoleub2.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 11 |
|
nmoleub2.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
| 12 |
|
nmoleub3.5 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
| 13 |
|
nmoleub3.6 |
⊢ ( 𝜑 → ℝ ⊆ 𝐾 ) |
| 14 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → 0 ≤ 𝐴 ) |
| 15 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
| 16 |
13
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ℝ ⊆ 𝐾 ) |
| 17 |
11
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑅 ∈ ℝ+ ) |
| 18 |
7
|
elin1d |
⊢ ( 𝜑 → 𝑆 ∈ NrmMod ) |
| 19 |
18
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑆 ∈ NrmMod ) |
| 20 |
|
nlmngp |
⊢ ( 𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp ) |
| 21 |
19 20
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑆 ∈ NrmGrp ) |
| 22 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑦 ∈ 𝑉 ) |
| 23 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑦 ≠ ( 0g ‘ 𝑆 ) ) |
| 24 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 25 |
2 3 24
|
nmrpcl |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) → ( 𝐿 ‘ 𝑦 ) ∈ ℝ+ ) |
| 26 |
21 22 23 25
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝐿 ‘ 𝑦 ) ∈ ℝ+ ) |
| 27 |
17 26
|
rpdivcld |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ ℝ+ ) |
| 28 |
27
|
rpred |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ ℝ ) |
| 29 |
16 28
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ 𝐾 ) |
| 30 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) |
| 31 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑇 ) = ( ·𝑠 ‘ 𝑇 ) |
| 32 |
5 6 2 30 31
|
lmhmlin |
⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) → ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 33 |
15 29 22 32
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 34 |
33
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) = ( 𝑀 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 35 |
8
|
elin1d |
⊢ ( 𝜑 → 𝑇 ∈ NrmMod ) |
| 36 |
35
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑇 ∈ NrmMod ) |
| 37 |
|
eqid |
⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) |
| 38 |
5 37
|
lmhmsca |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( Scalar ‘ 𝑇 ) = 𝐺 ) |
| 39 |
15 38
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( Scalar ‘ 𝑇 ) = 𝐺 ) |
| 40 |
39
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( Base ‘ ( Scalar ‘ 𝑇 ) ) = ( Base ‘ 𝐺 ) ) |
| 41 |
40 6
|
eqtr4di |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( Base ‘ ( Scalar ‘ 𝑇 ) ) = 𝐾 ) |
| 42 |
29 41
|
eleqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
| 43 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
| 44 |
2 43
|
lmhmf |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
| 45 |
15 44
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
| 46 |
45 22
|
ffvelcdmd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑇 ) ) |
| 47 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑇 ) ) = ( Base ‘ ( Scalar ‘ 𝑇 ) ) |
| 48 |
|
eqid |
⊢ ( norm ‘ ( Scalar ‘ 𝑇 ) ) = ( norm ‘ ( Scalar ‘ 𝑇 ) ) |
| 49 |
43 4 31 37 47 48
|
nmvs |
⊢ ( ( 𝑇 ∈ NrmMod ∧ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑇 ) ) → ( 𝑀 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝑇 ) ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) · ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 50 |
36 42 46 49
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑀 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝑇 ) ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) · ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 51 |
39
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( norm ‘ ( Scalar ‘ 𝑇 ) ) = ( norm ‘ 𝐺 ) ) |
| 52 |
51
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ ( Scalar ‘ 𝑇 ) ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) ) |
| 53 |
7
|
elin2d |
⊢ ( 𝜑 → 𝑆 ∈ ℂMod ) |
| 54 |
53
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑆 ∈ ℂMod ) |
| 55 |
5 6
|
clmabs |
⊢ ( ( 𝑆 ∈ ℂMod ∧ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ 𝐾 ) → ( abs ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) ) |
| 56 |
54 29 55
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( abs ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) ) |
| 57 |
27
|
rpge0d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 0 ≤ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) |
| 58 |
28 57
|
absidd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( abs ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) = ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) |
| 59 |
56 58
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ 𝐺 ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) = ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) |
| 60 |
52 59
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( norm ‘ ( Scalar ‘ 𝑇 ) ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) = ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) |
| 61 |
60
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( ( norm ‘ ( Scalar ‘ 𝑇 ) ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) · ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) · ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 62 |
34 50 61
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) · ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 63 |
62
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) = ( ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) · ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ) / 𝑅 ) ) |
| 64 |
27
|
rpcnd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ ℂ ) |
| 65 |
|
nlmngp |
⊢ ( 𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp ) |
| 66 |
36 65
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑇 ∈ NrmGrp ) |
| 67 |
43 4
|
nmcl |
⊢ ( ( 𝑇 ∈ NrmGrp ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑇 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) |
| 68 |
66 46 67
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ℝ ) |
| 69 |
68
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ∈ ℂ ) |
| 70 |
17
|
rpcnd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑅 ∈ ℂ ) |
| 71 |
17
|
rpne0d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝑅 ≠ 0 ) |
| 72 |
64 69 70 71
|
divassd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) · ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ) / 𝑅 ) = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) · ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) / 𝑅 ) ) ) |
| 73 |
26
|
rpcnd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝐿 ‘ 𝑦 ) ∈ ℂ ) |
| 74 |
26
|
rpne0d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝐿 ‘ 𝑦 ) ≠ 0 ) |
| 75 |
69 70 73 71 74
|
dmdcand |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) · ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) / 𝑅 ) ) = ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) / ( 𝐿 ‘ 𝑦 ) ) ) |
| 76 |
63 72 75
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) = ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) / ( 𝐿 ‘ 𝑦 ) ) ) |
| 77 |
|
eqid |
⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) |
| 78 |
2 3 30 5 6 77
|
nmvs |
⊢ ( ( 𝑆 ∈ NrmMod ∧ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) → ( 𝐿 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( ( ( norm ‘ 𝐺 ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) · ( 𝐿 ‘ 𝑦 ) ) ) |
| 79 |
19 29 22 78
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝐿 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( ( ( norm ‘ 𝐺 ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) · ( 𝐿 ‘ 𝑦 ) ) ) |
| 80 |
59
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( ( norm ‘ 𝐺 ) ‘ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ) · ( 𝐿 ‘ 𝑦 ) ) = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) · ( 𝐿 ‘ 𝑦 ) ) ) |
| 81 |
70 73 74
|
divcan1d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) · ( 𝐿 ‘ 𝑦 ) ) = 𝑅 ) |
| 82 |
79 80 81
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝐿 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = 𝑅 ) |
| 83 |
|
fveqeq2 |
⊢ ( 𝑥 = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( ( 𝐿 ‘ 𝑥 ) = 𝑅 ↔ ( 𝐿 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = 𝑅 ) ) |
| 84 |
|
2fveq3 |
⊢ ( 𝑥 = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) ) |
| 85 |
84
|
oveq1d |
⊢ ( 𝑥 = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) = ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) ) |
| 86 |
85
|
breq1d |
⊢ ( 𝑥 = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ↔ ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) ≤ 𝐴 ) ) |
| 87 |
83 86
|
imbi12d |
⊢ ( 𝑥 = ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) → ( ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ↔ ( ( 𝐿 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |
| 88 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) |
| 89 |
2 5 30 6
|
clmvscl |
⊢ ( ( 𝑆 ∈ ℂMod ∧ ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ∈ 𝐾 ∧ 𝑦 ∈ 𝑉 ) → ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ 𝑉 ) |
| 90 |
54 29 22 89
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ∈ 𝑉 ) |
| 91 |
87 88 90
|
rspcdva |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝐿 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) ≤ 𝐴 ) ) |
| 92 |
82 91
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ ( ( 𝑅 / ( 𝐿 ‘ 𝑦 ) ) ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) ) / 𝑅 ) ≤ 𝐴 ) |
| 93 |
76 92
|
eqbrtrrd |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) / ( 𝐿 ‘ 𝑦 ) ) ≤ 𝐴 ) |
| 94 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → 𝐴 ∈ ℝ ) |
| 95 |
68 94 26
|
ledivmul2d |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) / ( 𝐿 ‘ 𝑦 ) ) ≤ 𝐴 ↔ ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) ) |
| 96 |
93 95
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) |
| 97 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑅 ∈ ℝ+ ) |
| 98 |
97
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑅 ∈ ℝ ) |
| 99 |
98
|
leidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 𝑅 ≤ 𝑅 ) |
| 100 |
|
breq1 |
⊢ ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ↔ 𝑅 ≤ 𝑅 ) ) |
| 101 |
99 100
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) |
| 102 |
1 2 3 4 5 6 7 8 9 10 11 14 96 101
|
nmoleub2lem |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ 𝑉 ( ( 𝐿 ‘ 𝑥 ) = 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |