| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmhmcn.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑆 ) | 
						
							| 2 |  | nmhmcn.k | ⊢ 𝐾  =  ( TopOpen ‘ 𝑇 ) | 
						
							| 3 |  | nmhmcn.g | ⊢ 𝐺  =  ( Scalar ‘ 𝑆 ) | 
						
							| 4 |  | nmhmcn.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 5 |  | elinel1 | ⊢ ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  →  𝑆  ∈  NrmMod ) | 
						
							| 6 |  | elinel1 | ⊢ ( 𝑇  ∈  ( NrmMod  ∩  ℂMod )  →  𝑇  ∈  NrmMod ) | 
						
							| 7 |  | isnmhm | ⊢ ( 𝐹  ∈  ( 𝑆  NMHom  𝑇 )  ↔  ( ( 𝑆  ∈  NrmMod  ∧  𝑇  ∈  NrmMod )  ∧  ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹  ∈  ( 𝑆  NGHom  𝑇 ) ) ) ) | 
						
							| 8 | 7 | baib | ⊢ ( ( 𝑆  ∈  NrmMod  ∧  𝑇  ∈  NrmMod )  →  ( 𝐹  ∈  ( 𝑆  NMHom  𝑇 )  ↔  ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹  ∈  ( 𝑆  NGHom  𝑇 ) ) ) ) | 
						
							| 9 | 5 6 8 | syl2an | ⊢ ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod ) )  →  ( 𝐹  ∈  ( 𝑆  NMHom  𝑇 )  ↔  ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹  ∈  ( 𝑆  NGHom  𝑇 ) ) ) ) | 
						
							| 10 | 9 | 3adant3 | ⊢ ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  →  ( 𝐹  ∈  ( 𝑆  NMHom  𝑇 )  ↔  ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹  ∈  ( 𝑆  NGHom  𝑇 ) ) ) ) | 
						
							| 11 | 1 2 | nghmcn | ⊢ ( 𝐹  ∈  ( 𝑆  NGHom  𝑇 )  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 12 |  | simpll1 | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝑆  ∈  ( NrmMod  ∩  ℂMod ) ) | 
						
							| 13 | 12 | elin1d | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝑆  ∈  NrmMod ) | 
						
							| 14 |  | nlmngp | ⊢ ( 𝑆  ∈  NrmMod  →  𝑆  ∈  NrmGrp ) | 
						
							| 15 |  | ngpms | ⊢ ( 𝑆  ∈  NrmGrp  →  𝑆  ∈  MetSp ) | 
						
							| 16 | 13 14 15 | 3syl | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝑆  ∈  MetSp ) | 
						
							| 17 |  | msxms | ⊢ ( 𝑆  ∈  MetSp  →  𝑆  ∈  ∞MetSp ) | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 19 |  | eqid | ⊢ ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) )  =  ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) | 
						
							| 20 | 18 19 | xmsxmet | ⊢ ( 𝑆  ∈  ∞MetSp  →  ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝑆 ) ) ) | 
						
							| 21 | 16 17 20 | 3syl | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝑆 ) ) ) | 
						
							| 22 |  | simpr | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 23 |  | simpll2 | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝑇  ∈  ( NrmMod  ∩  ℂMod ) ) | 
						
							| 24 | 23 | elin1d | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝑇  ∈  NrmMod ) | 
						
							| 25 |  | nlmngp | ⊢ ( 𝑇  ∈  NrmMod  →  𝑇  ∈  NrmGrp ) | 
						
							| 26 |  | ngpms | ⊢ ( 𝑇  ∈  NrmGrp  →  𝑇  ∈  MetSp ) | 
						
							| 27 | 24 25 26 | 3syl | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝑇  ∈  MetSp ) | 
						
							| 28 |  | msxms | ⊢ ( 𝑇  ∈  MetSp  →  𝑇  ∈  ∞MetSp ) | 
						
							| 29 |  | eqid | ⊢ ( Base ‘ 𝑇 )  =  ( Base ‘ 𝑇 ) | 
						
							| 30 |  | eqid | ⊢ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) )  =  ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) | 
						
							| 31 | 29 30 | xmsxmet | ⊢ ( 𝑇  ∈  ∞MetSp  →  ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝑇 ) ) ) | 
						
							| 32 | 27 28 31 | 3syl | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝑇 ) ) ) | 
						
							| 33 |  | nlmlmod | ⊢ ( 𝑇  ∈  NrmMod  →  𝑇  ∈  LMod ) | 
						
							| 34 |  | eqid | ⊢ ( 0g ‘ 𝑇 )  =  ( 0g ‘ 𝑇 ) | 
						
							| 35 | 29 34 | lmod0vcl | ⊢ ( 𝑇  ∈  LMod  →  ( 0g ‘ 𝑇 )  ∈  ( Base ‘ 𝑇 ) ) | 
						
							| 36 | 24 33 35 | 3syl | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( 0g ‘ 𝑇 )  ∈  ( Base ‘ 𝑇 ) ) | 
						
							| 37 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 38 |  | rpxr | ⊢ ( 1  ∈  ℝ+  →  1  ∈  ℝ* ) | 
						
							| 39 | 37 38 | mp1i | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  1  ∈  ℝ* ) | 
						
							| 40 |  | eqid | ⊢ ( MetOpen ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) )  =  ( MetOpen ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) | 
						
							| 41 | 40 | blopn | ⊢ ( ( ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝑇 ) )  ∧  ( 0g ‘ 𝑇 )  ∈  ( Base ‘ 𝑇 )  ∧  1  ∈  ℝ* )  →  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 )  ∈  ( MetOpen ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) ) | 
						
							| 42 | 32 36 39 41 | syl3anc | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 )  ∈  ( MetOpen ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) ) | 
						
							| 43 | 2 29 30 | mstopn | ⊢ ( 𝑇  ∈  MetSp  →  𝐾  =  ( MetOpen ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) ) | 
						
							| 44 | 24 25 26 43 | 4syl | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐾  =  ( MetOpen ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) ) | 
						
							| 45 | 42 44 | eleqtrrd | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 )  ∈  𝐾 ) | 
						
							| 46 |  | cnima | ⊢ ( ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ∧  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 )  ∈  𝐾 )  →  ( ◡ 𝐹  “  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) )  ∈  𝐽 ) | 
						
							| 47 | 22 45 46 | syl2anc | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( ◡ 𝐹  “  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) )  ∈  𝐽 ) | 
						
							| 48 | 1 18 19 | mstopn | ⊢ ( 𝑆  ∈  MetSp  →  𝐽  =  ( MetOpen ‘ ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) ) ) | 
						
							| 49 | 13 14 15 48 | 4syl | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐽  =  ( MetOpen ‘ ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) ) ) | 
						
							| 50 | 47 49 | eleqtrd | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( ◡ 𝐹  “  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) )  ∈  ( MetOpen ‘ ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) ) ) | 
						
							| 51 |  | nlmlmod | ⊢ ( 𝑆  ∈  NrmMod  →  𝑆  ∈  LMod ) | 
						
							| 52 |  | eqid | ⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 ) | 
						
							| 53 | 18 52 | lmod0vcl | ⊢ ( 𝑆  ∈  LMod  →  ( 0g ‘ 𝑆 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 54 | 13 51 53 | 3syl | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( 0g ‘ 𝑆 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 55 |  | lmghm | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 56 | 55 | ad2antlr | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 57 | 52 34 | ghmid | ⊢ ( 𝐹  ∈  ( 𝑆  GrpHom  𝑇 )  →  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) | 
						
							| 58 | 56 57 | syl | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  =  ( 0g ‘ 𝑇 ) ) | 
						
							| 59 | 37 | a1i | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  1  ∈  ℝ+ ) | 
						
							| 60 |  | blcntr | ⊢ ( ( ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝑇 ) )  ∧  ( 0g ‘ 𝑇 )  ∈  ( Base ‘ 𝑇 )  ∧  1  ∈  ℝ+ )  →  ( 0g ‘ 𝑇 )  ∈  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) ) | 
						
							| 61 | 32 36 59 60 | syl3anc | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( 0g ‘ 𝑇 )  ∈  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) ) | 
						
							| 62 | 58 61 | eqeltrd | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  ∈  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) ) | 
						
							| 63 | 18 29 | lmhmf | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 64 | 63 | ad2antlr | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 65 |  | ffn | ⊢ ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 )  →  𝐹  Fn  ( Base ‘ 𝑆 ) ) | 
						
							| 66 |  | elpreima | ⊢ ( 𝐹  Fn  ( Base ‘ 𝑆 )  →  ( ( 0g ‘ 𝑆 )  ∈  ( ◡ 𝐹  “  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) )  ↔  ( ( 0g ‘ 𝑆 )  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  ∈  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) ) ) ) | 
						
							| 67 | 64 65 66 | 3syl | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( ( 0g ‘ 𝑆 )  ∈  ( ◡ 𝐹  “  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) )  ↔  ( ( 0g ‘ 𝑆 )  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ ( 0g ‘ 𝑆 ) )  ∈  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) ) ) ) | 
						
							| 68 | 54 62 67 | mpbir2and | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( 0g ‘ 𝑆 )  ∈  ( ◡ 𝐹  “  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) ) ) | 
						
							| 69 |  | eqid | ⊢ ( MetOpen ‘ ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) )  =  ( MetOpen ‘ ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) ) | 
						
							| 70 | 69 | mopni2 | ⊢ ( ( ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝑆 ) )  ∧  ( ◡ 𝐹  “  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) )  ∈  ( MetOpen ‘ ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) )  ∧  ( 0g ‘ 𝑆 )  ∈  ( ◡ 𝐹  “  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) ) )  →  ∃ 𝑥  ∈  ℝ+ ( ( 0g ‘ 𝑆 ) ( ball ‘ ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) ) 𝑥 )  ⊆  ( ◡ 𝐹  “  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) ) ) | 
						
							| 71 | 21 50 68 70 | syl3anc | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ∃ 𝑥  ∈  ℝ+ ( ( 0g ‘ 𝑆 ) ( ball ‘ ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) ) 𝑥 )  ⊆  ( ◡ 𝐹  “  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) ) ) | 
						
							| 72 |  | simpl1 | ⊢ ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  →  𝑆  ∈  ( NrmMod  ∩  ℂMod ) ) | 
						
							| 73 | 72 | elin1d | ⊢ ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  →  𝑆  ∈  NrmMod ) | 
						
							| 74 | 73 14 | syl | ⊢ ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  →  𝑆  ∈  NrmGrp ) | 
						
							| 75 | 74 | adantr | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝑆  ∈  NrmGrp ) | 
						
							| 76 | 75 | ad2antrr | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  𝑆  ∈  NrmGrp ) | 
						
							| 77 |  | ngpgrp | ⊢ ( 𝑆  ∈  NrmGrp  →  𝑆  ∈  Grp ) | 
						
							| 78 | 76 77 | syl | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  𝑆  ∈  Grp ) | 
						
							| 79 |  | simpr | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  𝑦  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 80 |  | eqid | ⊢ ( norm ‘ 𝑆 )  =  ( norm ‘ 𝑆 ) | 
						
							| 81 |  | eqid | ⊢ ( dist ‘ 𝑆 )  =  ( dist ‘ 𝑆 ) | 
						
							| 82 | 80 18 52 81 19 | nmval2 | ⊢ ( ( 𝑆  ∈  Grp  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( ( norm ‘ 𝑆 ) ‘ 𝑦 )  =  ( 𝑦 ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) ( 0g ‘ 𝑆 ) ) ) | 
						
							| 83 | 78 79 82 | syl2anc | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( ( norm ‘ 𝑆 ) ‘ 𝑦 )  =  ( 𝑦 ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) ( 0g ‘ 𝑆 ) ) ) | 
						
							| 84 | 21 | ad2antrr | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝑆 ) ) ) | 
						
							| 85 | 54 | ad2antrr | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( 0g ‘ 𝑆 )  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 86 |  | xmetsym | ⊢ ( ( ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝑆 ) )  ∧  𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 0g ‘ 𝑆 )  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝑦 ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) ( 0g ‘ 𝑆 ) )  =  ( ( 0g ‘ 𝑆 ) ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) 𝑦 ) ) | 
						
							| 87 | 84 79 85 86 | syl3anc | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝑦 ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) ( 0g ‘ 𝑆 ) )  =  ( ( 0g ‘ 𝑆 ) ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) 𝑦 ) ) | 
						
							| 88 | 83 87 | eqtrd | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( ( norm ‘ 𝑆 ) ‘ 𝑦 )  =  ( ( 0g ‘ 𝑆 ) ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) 𝑦 ) ) | 
						
							| 89 | 88 | breq1d | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( ( ( norm ‘ 𝑆 ) ‘ 𝑦 )  <  𝑥  ↔  ( ( 0g ‘ 𝑆 ) ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) 𝑦 )  <  𝑥 ) ) | 
						
							| 90 | 89 | biimpd | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( ( ( norm ‘ 𝑆 ) ‘ 𝑦 )  <  𝑥  →  ( ( 0g ‘ 𝑆 ) ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) 𝑦 )  <  𝑥 ) ) | 
						
							| 91 | 64 | ad2antrr | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 92 |  | elpreima | ⊢ ( 𝐹  Fn  ( Base ‘ 𝑆 )  →  ( 𝑦  ∈  ( ◡ 𝐹  “  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) )  ↔  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  ∈  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) ) ) ) | 
						
							| 93 | 91 65 92 | 3syl | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝑦  ∈  ( ◡ 𝐹  “  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) )  ↔  ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  ∈  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) ) ) ) | 
						
							| 94 | 32 | ad2antrr | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝑇 ) ) ) | 
						
							| 95 | 36 | ad2antrr | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( 0g ‘ 𝑇 )  ∈  ( Base ‘ 𝑇 ) ) | 
						
							| 96 | 37 38 | mp1i | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  1  ∈  ℝ* ) | 
						
							| 97 |  | elbl | ⊢ ( ( ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝑇 ) )  ∧  ( 0g ‘ 𝑇 )  ∈  ( Base ‘ 𝑇 )  ∧  1  ∈  ℝ* )  →  ( ( 𝐹 ‘ 𝑦 )  ∈  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 )  ↔  ( ( 𝐹 ‘ 𝑦 )  ∈  ( Base ‘ 𝑇 )  ∧  ( ( 0g ‘ 𝑇 ) ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ( 𝐹 ‘ 𝑦 ) )  <  1 ) ) ) | 
						
							| 98 | 94 95 96 97 | syl3anc | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( ( 𝐹 ‘ 𝑦 )  ∈  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 )  ↔  ( ( 𝐹 ‘ 𝑦 )  ∈  ( Base ‘ 𝑇 )  ∧  ( ( 0g ‘ 𝑇 ) ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ( 𝐹 ‘ 𝑦 ) )  <  1 ) ) ) | 
						
							| 99 |  | simpl2 | ⊢ ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  →  𝑇  ∈  ( NrmMod  ∩  ℂMod ) ) | 
						
							| 100 | 99 | elin1d | ⊢ ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  →  𝑇  ∈  NrmMod ) | 
						
							| 101 | 100 25 | syl | ⊢ ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  →  𝑇  ∈  NrmGrp ) | 
						
							| 102 | 101 | adantr | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝑇  ∈  NrmGrp ) | 
						
							| 103 | 102 | ad2antrr | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  𝑇  ∈  NrmGrp ) | 
						
							| 104 |  | simplr | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) ) | 
						
							| 105 | 104 | adantr | ⊢ ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  →  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) ) | 
						
							| 106 | 105 63 | syl | ⊢ ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  →  𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 107 | 106 | ffvelcdmda | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝐹 ‘ 𝑦 )  ∈  ( Base ‘ 𝑇 ) ) | 
						
							| 108 |  | eqid | ⊢ ( norm ‘ 𝑇 )  =  ( norm ‘ 𝑇 ) | 
						
							| 109 | 29 108 | nmcl | ⊢ ( ( 𝑇  ∈  NrmGrp  ∧  ( 𝐹 ‘ 𝑦 )  ∈  ( Base ‘ 𝑇 ) )  →  ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑦 ) )  ∈  ℝ ) | 
						
							| 110 | 103 107 109 | syl2anc | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑦 ) )  ∈  ℝ ) | 
						
							| 111 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 112 |  | ltle | ⊢ ( ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑦 ) )  ∈  ℝ  ∧  1  ∈  ℝ )  →  ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑦 ) )  <  1  →  ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  1 ) ) | 
						
							| 113 | 110 111 112 | sylancl | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑦 ) )  <  1  →  ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  1 ) ) | 
						
							| 114 |  | ngpgrp | ⊢ ( 𝑇  ∈  NrmGrp  →  𝑇  ∈  Grp ) | 
						
							| 115 | 103 114 | syl | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  𝑇  ∈  Grp ) | 
						
							| 116 |  | eqid | ⊢ ( dist ‘ 𝑇 )  =  ( dist ‘ 𝑇 ) | 
						
							| 117 | 108 29 34 116 30 | nmval2 | ⊢ ( ( 𝑇  ∈  Grp  ∧  ( 𝐹 ‘ 𝑦 )  ∈  ( Base ‘ 𝑇 ) )  →  ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑦 ) ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ( 0g ‘ 𝑇 ) ) ) | 
						
							| 118 | 115 107 117 | syl2anc | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑦 ) ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ( 0g ‘ 𝑇 ) ) ) | 
						
							| 119 |  | xmetsym | ⊢ ( ( ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝑇 ) )  ∧  ( 𝐹 ‘ 𝑦 )  ∈  ( Base ‘ 𝑇 )  ∧  ( 0g ‘ 𝑇 )  ∈  ( Base ‘ 𝑇 ) )  →  ( ( 𝐹 ‘ 𝑦 ) ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ( 0g ‘ 𝑇 ) )  =  ( ( 0g ‘ 𝑇 ) ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 120 | 94 107 95 119 | syl3anc | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( ( 𝐹 ‘ 𝑦 ) ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ( 0g ‘ 𝑇 ) )  =  ( ( 0g ‘ 𝑇 ) ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 121 | 118 120 | eqtrd | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑦 ) )  =  ( ( 0g ‘ 𝑇 ) ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 122 | 121 | breq1d | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑦 ) )  <  1  ↔  ( ( 0g ‘ 𝑇 ) ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ( 𝐹 ‘ 𝑦 ) )  <  1 ) ) | 
						
							| 123 |  | 1red | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  1  ∈  ℝ ) | 
						
							| 124 |  | simplr | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  𝑥  ∈  ℝ+ ) | 
						
							| 125 | 110 123 124 | lediv1d | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  1  ↔  ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑦 ) )  /  𝑥 )  ≤  ( 1  /  𝑥 ) ) ) | 
						
							| 126 | 113 122 125 | 3imtr3d | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( ( ( 0g ‘ 𝑇 ) ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ( 𝐹 ‘ 𝑦 ) )  <  1  →  ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑦 ) )  /  𝑥 )  ≤  ( 1  /  𝑥 ) ) ) | 
						
							| 127 | 126 | adantld | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( ( ( 𝐹 ‘ 𝑦 )  ∈  ( Base ‘ 𝑇 )  ∧  ( ( 0g ‘ 𝑇 ) ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ( 𝐹 ‘ 𝑦 ) )  <  1 )  →  ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑦 ) )  /  𝑥 )  ≤  ( 1  /  𝑥 ) ) ) | 
						
							| 128 | 98 127 | sylbid | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( ( 𝐹 ‘ 𝑦 )  ∈  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 )  →  ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑦 ) )  /  𝑥 )  ≤  ( 1  /  𝑥 ) ) ) | 
						
							| 129 | 128 | adantld | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( ( 𝑦  ∈  ( Base ‘ 𝑆 )  ∧  ( 𝐹 ‘ 𝑦 )  ∈  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) )  →  ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑦 ) )  /  𝑥 )  ≤  ( 1  /  𝑥 ) ) ) | 
						
							| 130 | 93 129 | sylbid | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝑦  ∈  ( ◡ 𝐹  “  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) )  →  ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑦 ) )  /  𝑥 )  ≤  ( 1  /  𝑥 ) ) ) | 
						
							| 131 | 90 130 | imim12d | ⊢ ( ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  ∧  𝑦  ∈  ( Base ‘ 𝑆 ) )  →  ( ( ( ( 0g ‘ 𝑆 ) ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) 𝑦 )  <  𝑥  →  𝑦  ∈  ( ◡ 𝐹  “  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) ) )  →  ( ( ( norm ‘ 𝑆 ) ‘ 𝑦 )  <  𝑥  →  ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑦 ) )  /  𝑥 )  ≤  ( 1  /  𝑥 ) ) ) ) | 
						
							| 132 | 131 | ralimdva | ⊢ ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  →  ( ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( ( ( 0g ‘ 𝑆 ) ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) 𝑦 )  <  𝑥  →  𝑦  ∈  ( ◡ 𝐹  “  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) ) )  →  ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( ( ( norm ‘ 𝑆 ) ‘ 𝑦 )  <  𝑥  →  ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑦 ) )  /  𝑥 )  ≤  ( 1  /  𝑥 ) ) ) ) | 
						
							| 133 |  | rpxr | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℝ* ) | 
						
							| 134 |  | blval | ⊢ ( ( ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) )  ∈  ( ∞Met ‘ ( Base ‘ 𝑆 ) )  ∧  ( 0g ‘ 𝑆 )  ∈  ( Base ‘ 𝑆 )  ∧  𝑥  ∈  ℝ* )  →  ( ( 0g ‘ 𝑆 ) ( ball ‘ ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) ) 𝑥 )  =  { 𝑦  ∈  ( Base ‘ 𝑆 )  ∣  ( ( 0g ‘ 𝑆 ) ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) 𝑦 )  <  𝑥 } ) | 
						
							| 135 | 21 54 133 134 | syl2an3an | ⊢ ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  →  ( ( 0g ‘ 𝑆 ) ( ball ‘ ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) ) 𝑥 )  =  { 𝑦  ∈  ( Base ‘ 𝑆 )  ∣  ( ( 0g ‘ 𝑆 ) ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) 𝑦 )  <  𝑥 } ) | 
						
							| 136 | 135 | sseq1d | ⊢ ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  →  ( ( ( 0g ‘ 𝑆 ) ( ball ‘ ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) ) 𝑥 )  ⊆  ( ◡ 𝐹  “  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) )  ↔  { 𝑦  ∈  ( Base ‘ 𝑆 )  ∣  ( ( 0g ‘ 𝑆 ) ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) 𝑦 )  <  𝑥 }  ⊆  ( ◡ 𝐹  “  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) ) ) ) | 
						
							| 137 |  | rabss | ⊢ ( { 𝑦  ∈  ( Base ‘ 𝑆 )  ∣  ( ( 0g ‘ 𝑆 ) ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) 𝑦 )  <  𝑥 }  ⊆  ( ◡ 𝐹  “  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) )  ↔  ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( ( ( 0g ‘ 𝑆 ) ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) 𝑦 )  <  𝑥  →  𝑦  ∈  ( ◡ 𝐹  “  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) ) ) ) | 
						
							| 138 | 136 137 | bitrdi | ⊢ ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  →  ( ( ( 0g ‘ 𝑆 ) ( ball ‘ ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) ) 𝑥 )  ⊆  ( ◡ 𝐹  “  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) )  ↔  ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( ( ( 0g ‘ 𝑆 ) ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) 𝑦 )  <  𝑥  →  𝑦  ∈  ( ◡ 𝐹  “  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) ) ) ) ) | 
						
							| 139 |  | eqid | ⊢ ( 𝑆  normOp  𝑇 )  =  ( 𝑆  normOp  𝑇 ) | 
						
							| 140 | 12 | adantr | ⊢ ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  →  𝑆  ∈  ( NrmMod  ∩  ℂMod ) ) | 
						
							| 141 | 23 | adantr | ⊢ ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  →  𝑇  ∈  ( NrmMod  ∩  ℂMod ) ) | 
						
							| 142 |  | rpreccl | ⊢ ( 𝑥  ∈  ℝ+  →  ( 1  /  𝑥 )  ∈  ℝ+ ) | 
						
							| 143 | 142 | adantl | ⊢ ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  →  ( 1  /  𝑥 )  ∈  ℝ+ ) | 
						
							| 144 | 143 | rpxrd | ⊢ ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  →  ( 1  /  𝑥 )  ∈  ℝ* ) | 
						
							| 145 |  | simpr | ⊢ ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℝ+ ) | 
						
							| 146 |  | simpl3 | ⊢ ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  →  ℚ  ⊆  𝐵 ) | 
						
							| 147 | 146 | ad2antrr | ⊢ ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  →  ℚ  ⊆  𝐵 ) | 
						
							| 148 | 139 18 80 108 3 4 140 141 105 144 145 147 | nmoleub2b | ⊢ ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  →  ( ( ( 𝑆  normOp  𝑇 ) ‘ 𝐹 )  ≤  ( 1  /  𝑥 )  ↔  ∀ 𝑦  ∈  ( Base ‘ 𝑆 ) ( ( ( norm ‘ 𝑆 ) ‘ 𝑦 )  <  𝑥  →  ( ( ( norm ‘ 𝑇 ) ‘ ( 𝐹 ‘ 𝑦 ) )  /  𝑥 )  ≤  ( 1  /  𝑥 ) ) ) ) | 
						
							| 149 | 132 138 148 | 3imtr4d | ⊢ ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  →  ( ( ( 0g ‘ 𝑆 ) ( ball ‘ ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) ) 𝑥 )  ⊆  ( ◡ 𝐹  “  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) )  →  ( ( 𝑆  normOp  𝑇 ) ‘ 𝐹 )  ≤  ( 1  /  𝑥 ) ) ) | 
						
							| 150 | 75 102 56 | 3jca | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) ) ) | 
						
							| 151 | 142 | rpred | ⊢ ( 𝑥  ∈  ℝ+  →  ( 1  /  𝑥 )  ∈  ℝ ) | 
						
							| 152 | 139 | bddnghm | ⊢ ( ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  ∧  ( ( 1  /  𝑥 )  ∈  ℝ  ∧  ( ( 𝑆  normOp  𝑇 ) ‘ 𝐹 )  ≤  ( 1  /  𝑥 ) ) )  →  𝐹  ∈  ( 𝑆  NGHom  𝑇 ) ) | 
						
							| 153 | 152 | expr | ⊢ ( ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  ∧  ( 1  /  𝑥 )  ∈  ℝ )  →  ( ( ( 𝑆  normOp  𝑇 ) ‘ 𝐹 )  ≤  ( 1  /  𝑥 )  →  𝐹  ∈  ( 𝑆  NGHom  𝑇 ) ) ) | 
						
							| 154 | 150 151 153 | syl2an | ⊢ ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  →  ( ( ( 𝑆  normOp  𝑇 ) ‘ 𝐹 )  ≤  ( 1  /  𝑥 )  →  𝐹  ∈  ( 𝑆  NGHom  𝑇 ) ) ) | 
						
							| 155 | 149 154 | syld | ⊢ ( ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑥  ∈  ℝ+ )  →  ( ( ( 0g ‘ 𝑆 ) ( ball ‘ ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) ) 𝑥 )  ⊆  ( ◡ 𝐹  “  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) )  →  𝐹  ∈  ( 𝑆  NGHom  𝑇 ) ) ) | 
						
							| 156 | 155 | rexlimdva | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( ∃ 𝑥  ∈  ℝ+ ( ( 0g ‘ 𝑆 ) ( ball ‘ ( ( dist ‘ 𝑆 )  ↾  ( ( Base ‘ 𝑆 )  ×  ( Base ‘ 𝑆 ) ) ) ) 𝑥 )  ⊆  ( ◡ 𝐹  “  ( ( 0g ‘ 𝑇 ) ( ball ‘ ( ( dist ‘ 𝑇 )  ↾  ( ( Base ‘ 𝑇 )  ×  ( Base ‘ 𝑇 ) ) ) ) 1 ) )  →  𝐹  ∈  ( 𝑆  NGHom  𝑇 ) ) ) | 
						
							| 157 | 71 156 | mpd | ⊢ ( ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐹  ∈  ( 𝑆  NGHom  𝑇 ) ) | 
						
							| 158 | 157 | ex | ⊢ ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  →  ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐹  ∈  ( 𝑆  NGHom  𝑇 ) ) ) | 
						
							| 159 | 11 158 | impbid2 | ⊢ ( ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  ∧  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) )  →  ( 𝐹  ∈  ( 𝑆  NGHom  𝑇 )  ↔  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) ) | 
						
							| 160 | 159 | pm5.32da | ⊢ ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  →  ( ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹  ∈  ( 𝑆  NGHom  𝑇 ) )  ↔  ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) ) ) | 
						
							| 161 | 10 160 | bitrd | ⊢ ( ( 𝑆  ∈  ( NrmMod  ∩  ℂMod )  ∧  𝑇  ∈  ( NrmMod  ∩  ℂMod )  ∧  ℚ  ⊆  𝐵 )  →  ( 𝐹  ∈  ( 𝑆  NMHom  𝑇 )  ↔  ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) ) ) |