| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cmodscexp.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
cmodscexp.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 3 |
|
ax-icn |
⊢ i ∈ ℂ |
| 4 |
3
|
a1i |
⊢ ( ( 𝑊 ∈ ℂMod ∧ i ∈ 𝐾 ) → i ∈ ℂ ) |
| 5 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 6 |
|
cnfldexp |
⊢ ( ( i ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 ( .g ‘ ( mulGrp ‘ ℂfld ) ) i ) = ( i ↑ 𝑁 ) ) |
| 7 |
4 5 6
|
syl2an |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ i ∈ 𝐾 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ( .g ‘ ( mulGrp ‘ ℂfld ) ) i ) = ( i ↑ 𝑁 ) ) |
| 8 |
1 2
|
clmsubrg |
⊢ ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 9 |
|
eqid |
⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) |
| 10 |
9
|
subrgsubm |
⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ) |
| 11 |
8 10
|
syl |
⊢ ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ) |
| 12 |
11
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ i ∈ 𝐾 ) ∧ 𝑁 ∈ ℕ ) → 𝐾 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ) |
| 13 |
5
|
adantl |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ i ∈ 𝐾 ) ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ0 ) |
| 14 |
|
simplr |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ i ∈ 𝐾 ) ∧ 𝑁 ∈ ℕ ) → i ∈ 𝐾 ) |
| 15 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ ℂfld ) ) = ( .g ‘ ( mulGrp ‘ ℂfld ) ) |
| 16 |
15
|
submmulgcl |
⊢ ( ( 𝐾 ∈ ( SubMnd ‘ ( mulGrp ‘ ℂfld ) ) ∧ 𝑁 ∈ ℕ0 ∧ i ∈ 𝐾 ) → ( 𝑁 ( .g ‘ ( mulGrp ‘ ℂfld ) ) i ) ∈ 𝐾 ) |
| 17 |
12 13 14 16
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ i ∈ 𝐾 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ( .g ‘ ( mulGrp ‘ ℂfld ) ) i ) ∈ 𝐾 ) |
| 18 |
7 17
|
eqeltrrd |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ i ∈ 𝐾 ) ∧ 𝑁 ∈ ℕ ) → ( i ↑ 𝑁 ) ∈ 𝐾 ) |