Metamath Proof Explorer


Theorem cmodscexp

Description: The powers of _i belong to the scalar subring of a subcomplex module if _i belongs to the scalar subring . (Contributed by AV, 18-Oct-2021)

Ref Expression
Hypotheses cmodscexp.f F=ScalarW
cmodscexp.k K=BaseF
Assertion cmodscexp WCModiKNiNK

Proof

Step Hyp Ref Expression
1 cmodscexp.f F=ScalarW
2 cmodscexp.k K=BaseF
3 ax-icn i
4 3 a1i WCModiKi
5 nnnn0 NN0
6 cnfldexp iN0NmulGrpfldi=iN
7 4 5 6 syl2an WCModiKNNmulGrpfldi=iN
8 1 2 clmsubrg WCModKSubRingfld
9 eqid mulGrpfld=mulGrpfld
10 9 subrgsubm KSubRingfldKSubMndmulGrpfld
11 8 10 syl WCModKSubMndmulGrpfld
12 11 ad2antrr WCModiKNKSubMndmulGrpfld
13 5 adantl WCModiKNN0
14 simplr WCModiKNiK
15 eqid mulGrpfld=mulGrpfld
16 15 submmulgcl KSubMndmulGrpfldN0iKNmulGrpfldiK
17 12 13 14 16 syl3anc WCModiKNNmulGrpfldiK
18 7 17 eqeltrrd WCModiKNiNK