| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cmodscexp.f |  |-  F = ( Scalar ` W ) | 
						
							| 2 |  | cmodscexp.k |  |-  K = ( Base ` F ) | 
						
							| 3 |  | ax-icn |  |-  _i e. CC | 
						
							| 4 | 3 | a1i |  |-  ( ( W e. CMod /\ _i e. K ) -> _i e. CC ) | 
						
							| 5 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 6 |  | cnfldexp |  |-  ( ( _i e. CC /\ N e. NN0 ) -> ( N ( .g ` ( mulGrp ` CCfld ) ) _i ) = ( _i ^ N ) ) | 
						
							| 7 | 4 5 6 | syl2an |  |-  ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> ( N ( .g ` ( mulGrp ` CCfld ) ) _i ) = ( _i ^ N ) ) | 
						
							| 8 | 1 2 | clmsubrg |  |-  ( W e. CMod -> K e. ( SubRing ` CCfld ) ) | 
						
							| 9 |  | eqid |  |-  ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) | 
						
							| 10 | 9 | subrgsubm |  |-  ( K e. ( SubRing ` CCfld ) -> K e. ( SubMnd ` ( mulGrp ` CCfld ) ) ) | 
						
							| 11 | 8 10 | syl |  |-  ( W e. CMod -> K e. ( SubMnd ` ( mulGrp ` CCfld ) ) ) | 
						
							| 12 | 11 | ad2antrr |  |-  ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> K e. ( SubMnd ` ( mulGrp ` CCfld ) ) ) | 
						
							| 13 | 5 | adantl |  |-  ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> N e. NN0 ) | 
						
							| 14 |  | simplr |  |-  ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> _i e. K ) | 
						
							| 15 |  | eqid |  |-  ( .g ` ( mulGrp ` CCfld ) ) = ( .g ` ( mulGrp ` CCfld ) ) | 
						
							| 16 | 15 | submmulgcl |  |-  ( ( K e. ( SubMnd ` ( mulGrp ` CCfld ) ) /\ N e. NN0 /\ _i e. K ) -> ( N ( .g ` ( mulGrp ` CCfld ) ) _i ) e. K ) | 
						
							| 17 | 12 13 14 16 | syl3anc |  |-  ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> ( N ( .g ` ( mulGrp ` CCfld ) ) _i ) e. K ) | 
						
							| 18 | 7 17 | eqeltrrd |  |-  ( ( ( W e. CMod /\ _i e. K ) /\ N e. NN ) -> ( _i ^ N ) e. K ) |