| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cmodscexp.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
cmodscexp.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 3 |
|
cmodscmulexp.x |
⊢ 𝑋 = ( Base ‘ 𝑊 ) |
| 4 |
|
cmodscmulexp.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 5 |
|
clmlmod |
⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝑁 ∈ ℕ ) ) → 𝑊 ∈ LMod ) |
| 7 |
|
simp1 |
⊢ ( ( i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝑁 ∈ ℕ ) → i ∈ 𝐾 ) |
| 8 |
7
|
anim2i |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝑁 ∈ ℕ ) ) → ( 𝑊 ∈ ℂMod ∧ i ∈ 𝐾 ) ) |
| 9 |
|
simpr3 |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝑁 ∈ ℕ ) ) → 𝑁 ∈ ℕ ) |
| 10 |
1 2
|
cmodscexp |
⊢ ( ( ( 𝑊 ∈ ℂMod ∧ i ∈ 𝐾 ) ∧ 𝑁 ∈ ℕ ) → ( i ↑ 𝑁 ) ∈ 𝐾 ) |
| 11 |
8 9 10
|
syl2anc |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝑁 ∈ ℕ ) ) → ( i ↑ 𝑁 ) ∈ 𝐾 ) |
| 12 |
|
simpr2 |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝑁 ∈ ℕ ) ) → 𝐵 ∈ 𝑋 ) |
| 13 |
3 1 4 2
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( i ↑ 𝑁 ) ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ) → ( ( i ↑ 𝑁 ) · 𝐵 ) ∈ 𝑋 ) |
| 14 |
6 11 12 13
|
syl3anc |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ∧ 𝑁 ∈ ℕ ) ) → ( ( i ↑ 𝑁 ) · 𝐵 ) ∈ 𝑋 ) |