Metamath Proof Explorer


Theorem nmhmcn

Description: A linear operator over a normed subcomplex module is bounded iff it is continuous. (Contributed by Mario Carneiro, 22-Oct-2015)

Ref Expression
Hypotheses nmhmcn.j J=TopOpenS
nmhmcn.k K=TopOpenT
nmhmcn.g G=ScalarS
nmhmcn.b B=BaseG
Assertion nmhmcn SNrmModCModTNrmModCModBFSNMHomTFSLMHomTFJCnK

Proof

Step Hyp Ref Expression
1 nmhmcn.j J=TopOpenS
2 nmhmcn.k K=TopOpenT
3 nmhmcn.g G=ScalarS
4 nmhmcn.b B=BaseG
5 elinel1 SNrmModCModSNrmMod
6 elinel1 TNrmModCModTNrmMod
7 isnmhm FSNMHomTSNrmModTNrmModFSLMHomTFSNGHomT
8 7 baib SNrmModTNrmModFSNMHomTFSLMHomTFSNGHomT
9 5 6 8 syl2an SNrmModCModTNrmModCModFSNMHomTFSLMHomTFSNGHomT
10 9 3adant3 SNrmModCModTNrmModCModBFSNMHomTFSLMHomTFSNGHomT
11 1 2 nghmcn FSNGHomTFJCnK
12 simpll1 SNrmModCModTNrmModCModBFSLMHomTFJCnKSNrmModCMod
13 12 elin1d SNrmModCModTNrmModCModBFSLMHomTFJCnKSNrmMod
14 nlmngp SNrmModSNrmGrp
15 ngpms SNrmGrpSMetSp
16 13 14 15 3syl SNrmModCModTNrmModCModBFSLMHomTFJCnKSMetSp
17 msxms SMetSpS∞MetSp
18 eqid BaseS=BaseS
19 eqid distSBaseS×BaseS=distSBaseS×BaseS
20 18 19 xmsxmet S∞MetSpdistSBaseS×BaseS∞MetBaseS
21 16 17 20 3syl SNrmModCModTNrmModCModBFSLMHomTFJCnKdistSBaseS×BaseS∞MetBaseS
22 simpr SNrmModCModTNrmModCModBFSLMHomTFJCnKFJCnK
23 simpll2 SNrmModCModTNrmModCModBFSLMHomTFJCnKTNrmModCMod
24 23 elin1d SNrmModCModTNrmModCModBFSLMHomTFJCnKTNrmMod
25 nlmngp TNrmModTNrmGrp
26 ngpms TNrmGrpTMetSp
27 24 25 26 3syl SNrmModCModTNrmModCModBFSLMHomTFJCnKTMetSp
28 msxms TMetSpT∞MetSp
29 eqid BaseT=BaseT
30 eqid distTBaseT×BaseT=distTBaseT×BaseT
31 29 30 xmsxmet T∞MetSpdistTBaseT×BaseT∞MetBaseT
32 27 28 31 3syl SNrmModCModTNrmModCModBFSLMHomTFJCnKdistTBaseT×BaseT∞MetBaseT
33 nlmlmod TNrmModTLMod
34 eqid 0T=0T
35 29 34 lmod0vcl TLMod0TBaseT
36 24 33 35 3syl SNrmModCModTNrmModCModBFSLMHomTFJCnK0TBaseT
37 1rp 1+
38 rpxr 1+1*
39 37 38 mp1i SNrmModCModTNrmModCModBFSLMHomTFJCnK1*
40 eqid MetOpendistTBaseT×BaseT=MetOpendistTBaseT×BaseT
41 40 blopn distTBaseT×BaseT∞MetBaseT0TBaseT1*0TballdistTBaseT×BaseT1MetOpendistTBaseT×BaseT
42 32 36 39 41 syl3anc SNrmModCModTNrmModCModBFSLMHomTFJCnK0TballdistTBaseT×BaseT1MetOpendistTBaseT×BaseT
43 2 29 30 mstopn TMetSpK=MetOpendistTBaseT×BaseT
44 24 25 26 43 4syl SNrmModCModTNrmModCModBFSLMHomTFJCnKK=MetOpendistTBaseT×BaseT
45 42 44 eleqtrrd SNrmModCModTNrmModCModBFSLMHomTFJCnK0TballdistTBaseT×BaseT1K
46 cnima FJCnK0TballdistTBaseT×BaseT1KF-10TballdistTBaseT×BaseT1J
47 22 45 46 syl2anc SNrmModCModTNrmModCModBFSLMHomTFJCnKF-10TballdistTBaseT×BaseT1J
48 1 18 19 mstopn SMetSpJ=MetOpendistSBaseS×BaseS
49 13 14 15 48 4syl SNrmModCModTNrmModCModBFSLMHomTFJCnKJ=MetOpendistSBaseS×BaseS
50 47 49 eleqtrd SNrmModCModTNrmModCModBFSLMHomTFJCnKF-10TballdistTBaseT×BaseT1MetOpendistSBaseS×BaseS
51 nlmlmod SNrmModSLMod
52 eqid 0S=0S
53 18 52 lmod0vcl SLMod0SBaseS
54 13 51 53 3syl SNrmModCModTNrmModCModBFSLMHomTFJCnK0SBaseS
55 lmghm FSLMHomTFSGrpHomT
56 55 ad2antlr SNrmModCModTNrmModCModBFSLMHomTFJCnKFSGrpHomT
57 52 34 ghmid FSGrpHomTF0S=0T
58 56 57 syl SNrmModCModTNrmModCModBFSLMHomTFJCnKF0S=0T
59 37 a1i SNrmModCModTNrmModCModBFSLMHomTFJCnK1+
60 blcntr distTBaseT×BaseT∞MetBaseT0TBaseT1+0T0TballdistTBaseT×BaseT1
61 32 36 59 60 syl3anc SNrmModCModTNrmModCModBFSLMHomTFJCnK0T0TballdistTBaseT×BaseT1
62 58 61 eqeltrd SNrmModCModTNrmModCModBFSLMHomTFJCnKF0S0TballdistTBaseT×BaseT1
63 18 29 lmhmf FSLMHomTF:BaseSBaseT
64 63 ad2antlr SNrmModCModTNrmModCModBFSLMHomTFJCnKF:BaseSBaseT
65 ffn F:BaseSBaseTFFnBaseS
66 elpreima FFnBaseS0SF-10TballdistTBaseT×BaseT10SBaseSF0S0TballdistTBaseT×BaseT1
67 64 65 66 3syl SNrmModCModTNrmModCModBFSLMHomTFJCnK0SF-10TballdistTBaseT×BaseT10SBaseSF0S0TballdistTBaseT×BaseT1
68 54 62 67 mpbir2and SNrmModCModTNrmModCModBFSLMHomTFJCnK0SF-10TballdistTBaseT×BaseT1
69 eqid MetOpendistSBaseS×BaseS=MetOpendistSBaseS×BaseS
70 69 mopni2 distSBaseS×BaseS∞MetBaseSF-10TballdistTBaseT×BaseT1MetOpendistSBaseS×BaseS0SF-10TballdistTBaseT×BaseT1x+0SballdistSBaseS×BaseSxF-10TballdistTBaseT×BaseT1
71 21 50 68 70 syl3anc SNrmModCModTNrmModCModBFSLMHomTFJCnKx+0SballdistSBaseS×BaseSxF-10TballdistTBaseT×BaseT1
72 simpl1 SNrmModCModTNrmModCModBFSLMHomTSNrmModCMod
73 72 elin1d SNrmModCModTNrmModCModBFSLMHomTSNrmMod
74 73 14 syl SNrmModCModTNrmModCModBFSLMHomTSNrmGrp
75 74 adantr SNrmModCModTNrmModCModBFSLMHomTFJCnKSNrmGrp
76 75 ad2antrr SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSSNrmGrp
77 ngpgrp SNrmGrpSGrp
78 76 77 syl SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSSGrp
79 simpr SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSyBaseS
80 eqid normS=normS
81 eqid distS=distS
82 80 18 52 81 19 nmval2 SGrpyBaseSnormSy=ydistSBaseS×BaseS0S
83 78 79 82 syl2anc SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSnormSy=ydistSBaseS×BaseS0S
84 21 ad2antrr SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSdistSBaseS×BaseS∞MetBaseS
85 54 ad2antrr SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseS0SBaseS
86 xmetsym distSBaseS×BaseS∞MetBaseSyBaseS0SBaseSydistSBaseS×BaseS0S=0SdistSBaseS×BaseSy
87 84 79 85 86 syl3anc SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSydistSBaseS×BaseS0S=0SdistSBaseS×BaseSy
88 83 87 eqtrd SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSnormSy=0SdistSBaseS×BaseSy
89 88 breq1d SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSnormSy<x0SdistSBaseS×BaseSy<x
90 89 biimpd SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSnormSy<x0SdistSBaseS×BaseSy<x
91 64 ad2antrr SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSF:BaseSBaseT
92 elpreima FFnBaseSyF-10TballdistTBaseT×BaseT1yBaseSFy0TballdistTBaseT×BaseT1
93 91 65 92 3syl SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSyF-10TballdistTBaseT×BaseT1yBaseSFy0TballdistTBaseT×BaseT1
94 32 ad2antrr SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSdistTBaseT×BaseT∞MetBaseT
95 36 ad2antrr SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseS0TBaseT
96 37 38 mp1i SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseS1*
97 elbl distTBaseT×BaseT∞MetBaseT0TBaseT1*Fy0TballdistTBaseT×BaseT1FyBaseT0TdistTBaseT×BaseTFy<1
98 94 95 96 97 syl3anc SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSFy0TballdistTBaseT×BaseT1FyBaseT0TdistTBaseT×BaseTFy<1
99 simpl2 SNrmModCModTNrmModCModBFSLMHomTTNrmModCMod
100 99 elin1d SNrmModCModTNrmModCModBFSLMHomTTNrmMod
101 100 25 syl SNrmModCModTNrmModCModBFSLMHomTTNrmGrp
102 101 adantr SNrmModCModTNrmModCModBFSLMHomTFJCnKTNrmGrp
103 102 ad2antrr SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSTNrmGrp
104 simplr SNrmModCModTNrmModCModBFSLMHomTFJCnKFSLMHomT
105 104 adantr SNrmModCModTNrmModCModBFSLMHomTFJCnKx+FSLMHomT
106 105 63 syl SNrmModCModTNrmModCModBFSLMHomTFJCnKx+F:BaseSBaseT
107 106 ffvelcdmda SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSFyBaseT
108 eqid normT=normT
109 29 108 nmcl TNrmGrpFyBaseTnormTFy
110 103 107 109 syl2anc SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSnormTFy
111 1re 1
112 ltle normTFy1normTFy<1normTFy1
113 110 111 112 sylancl SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSnormTFy<1normTFy1
114 ngpgrp TNrmGrpTGrp
115 103 114 syl SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSTGrp
116 eqid distT=distT
117 108 29 34 116 30 nmval2 TGrpFyBaseTnormTFy=FydistTBaseT×BaseT0T
118 115 107 117 syl2anc SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSnormTFy=FydistTBaseT×BaseT0T
119 xmetsym distTBaseT×BaseT∞MetBaseTFyBaseT0TBaseTFydistTBaseT×BaseT0T=0TdistTBaseT×BaseTFy
120 94 107 95 119 syl3anc SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSFydistTBaseT×BaseT0T=0TdistTBaseT×BaseTFy
121 118 120 eqtrd SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSnormTFy=0TdistTBaseT×BaseTFy
122 121 breq1d SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSnormTFy<10TdistTBaseT×BaseTFy<1
123 1red SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseS1
124 simplr SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSx+
125 110 123 124 lediv1d SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSnormTFy1normTFyx1x
126 113 122 125 3imtr3d SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseS0TdistTBaseT×BaseTFy<1normTFyx1x
127 126 adantld SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSFyBaseT0TdistTBaseT×BaseTFy<1normTFyx1x
128 98 127 sylbid SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSFy0TballdistTBaseT×BaseT1normTFyx1x
129 128 adantld SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSyBaseSFy0TballdistTBaseT×BaseT1normTFyx1x
130 93 129 sylbid SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseSyF-10TballdistTBaseT×BaseT1normTFyx1x
131 90 130 imim12d SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseS0SdistSBaseS×BaseSy<xyF-10TballdistTBaseT×BaseT1normSy<xnormTFyx1x
132 131 ralimdva SNrmModCModTNrmModCModBFSLMHomTFJCnKx+yBaseS0SdistSBaseS×BaseSy<xyF-10TballdistTBaseT×BaseT1yBaseSnormSy<xnormTFyx1x
133 rpxr x+x*
134 blval distSBaseS×BaseS∞MetBaseS0SBaseSx*0SballdistSBaseS×BaseSx=yBaseS|0SdistSBaseS×BaseSy<x
135 21 54 133 134 syl2an3an SNrmModCModTNrmModCModBFSLMHomTFJCnKx+0SballdistSBaseS×BaseSx=yBaseS|0SdistSBaseS×BaseSy<x
136 135 sseq1d SNrmModCModTNrmModCModBFSLMHomTFJCnKx+0SballdistSBaseS×BaseSxF-10TballdistTBaseT×BaseT1yBaseS|0SdistSBaseS×BaseSy<xF-10TballdistTBaseT×BaseT1
137 rabss yBaseS|0SdistSBaseS×BaseSy<xF-10TballdistTBaseT×BaseT1yBaseS0SdistSBaseS×BaseSy<xyF-10TballdistTBaseT×BaseT1
138 136 137 bitrdi SNrmModCModTNrmModCModBFSLMHomTFJCnKx+0SballdistSBaseS×BaseSxF-10TballdistTBaseT×BaseT1yBaseS0SdistSBaseS×BaseSy<xyF-10TballdistTBaseT×BaseT1
139 eqid SnormOpT=SnormOpT
140 12 adantr SNrmModCModTNrmModCModBFSLMHomTFJCnKx+SNrmModCMod
141 23 adantr SNrmModCModTNrmModCModBFSLMHomTFJCnKx+TNrmModCMod
142 rpreccl x+1x+
143 142 adantl SNrmModCModTNrmModCModBFSLMHomTFJCnKx+1x+
144 143 rpxrd SNrmModCModTNrmModCModBFSLMHomTFJCnKx+1x*
145 simpr SNrmModCModTNrmModCModBFSLMHomTFJCnKx+x+
146 simpl3 SNrmModCModTNrmModCModBFSLMHomTB
147 146 ad2antrr SNrmModCModTNrmModCModBFSLMHomTFJCnKx+B
148 139 18 80 108 3 4 140 141 105 144 145 147 nmoleub2b SNrmModCModTNrmModCModBFSLMHomTFJCnKx+SnormOpTF1xyBaseSnormSy<xnormTFyx1x
149 132 138 148 3imtr4d SNrmModCModTNrmModCModBFSLMHomTFJCnKx+0SballdistSBaseS×BaseSxF-10TballdistTBaseT×BaseT1SnormOpTF1x
150 75 102 56 3jca SNrmModCModTNrmModCModBFSLMHomTFJCnKSNrmGrpTNrmGrpFSGrpHomT
151 142 rpred x+1x
152 139 bddnghm SNrmGrpTNrmGrpFSGrpHomT1xSnormOpTF1xFSNGHomT
153 152 expr SNrmGrpTNrmGrpFSGrpHomT1xSnormOpTF1xFSNGHomT
154 150 151 153 syl2an SNrmModCModTNrmModCModBFSLMHomTFJCnKx+SnormOpTF1xFSNGHomT
155 149 154 syld SNrmModCModTNrmModCModBFSLMHomTFJCnKx+0SballdistSBaseS×BaseSxF-10TballdistTBaseT×BaseT1FSNGHomT
156 155 rexlimdva SNrmModCModTNrmModCModBFSLMHomTFJCnKx+0SballdistSBaseS×BaseSxF-10TballdistTBaseT×BaseT1FSNGHomT
157 71 156 mpd SNrmModCModTNrmModCModBFSLMHomTFJCnKFSNGHomT
158 157 ex SNrmModCModTNrmModCModBFSLMHomTFJCnKFSNGHomT
159 11 158 impbid2 SNrmModCModTNrmModCModBFSLMHomTFSNGHomTFJCnK
160 159 pm5.32da SNrmModCModTNrmModCModBFSLMHomTFSNGHomTFSLMHomTFJCnK
161 10 160 bitrd SNrmModCModTNrmModCModBFSNMHomTFSLMHomTFJCnK