Step |
Hyp |
Ref |
Expression |
1 |
|
nmhmcn.j |
|
2 |
|
nmhmcn.k |
|
3 |
|
nmhmcn.g |
|
4 |
|
nmhmcn.b |
|
5 |
|
elinel1 |
|
6 |
|
elinel1 |
|
7 |
|
isnmhm |
|
8 |
7
|
baib |
|
9 |
5 6 8
|
syl2an |
|
10 |
9
|
3adant3 |
|
11 |
1 2
|
nghmcn |
|
12 |
|
simpll1 |
|
13 |
12
|
elin1d |
|
14 |
|
nlmngp |
|
15 |
|
ngpms |
|
16 |
13 14 15
|
3syl |
|
17 |
|
msxms |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
18 19
|
xmsxmet |
|
21 |
16 17 20
|
3syl |
|
22 |
|
simpr |
|
23 |
|
simpll2 |
|
24 |
23
|
elin1d |
|
25 |
|
nlmngp |
|
26 |
|
ngpms |
|
27 |
24 25 26
|
3syl |
|
28 |
|
msxms |
|
29 |
|
eqid |
|
30 |
|
eqid |
|
31 |
29 30
|
xmsxmet |
|
32 |
27 28 31
|
3syl |
|
33 |
|
nlmlmod |
|
34 |
|
eqid |
|
35 |
29 34
|
lmod0vcl |
|
36 |
24 33 35
|
3syl |
|
37 |
|
1rp |
|
38 |
|
rpxr |
|
39 |
37 38
|
mp1i |
|
40 |
|
eqid |
|
41 |
40
|
blopn |
|
42 |
32 36 39 41
|
syl3anc |
|
43 |
2 29 30
|
mstopn |
|
44 |
24 25 26 43
|
4syl |
|
45 |
42 44
|
eleqtrrd |
|
46 |
|
cnima |
|
47 |
22 45 46
|
syl2anc |
|
48 |
1 18 19
|
mstopn |
|
49 |
13 14 15 48
|
4syl |
|
50 |
47 49
|
eleqtrd |
|
51 |
|
nlmlmod |
|
52 |
|
eqid |
|
53 |
18 52
|
lmod0vcl |
|
54 |
13 51 53
|
3syl |
|
55 |
|
lmghm |
|
56 |
55
|
ad2antlr |
|
57 |
52 34
|
ghmid |
|
58 |
56 57
|
syl |
|
59 |
37
|
a1i |
|
60 |
|
blcntr |
|
61 |
32 36 59 60
|
syl3anc |
|
62 |
58 61
|
eqeltrd |
|
63 |
18 29
|
lmhmf |
|
64 |
63
|
ad2antlr |
|
65 |
|
ffn |
|
66 |
|
elpreima |
|
67 |
64 65 66
|
3syl |
|
68 |
54 62 67
|
mpbir2and |
|
69 |
|
eqid |
|
70 |
69
|
mopni2 |
|
71 |
21 50 68 70
|
syl3anc |
|
72 |
|
simpl1 |
|
73 |
72
|
elin1d |
|
74 |
73 14
|
syl |
|
75 |
74
|
adantr |
|
76 |
75
|
ad2antrr |
|
77 |
|
ngpgrp |
|
78 |
76 77
|
syl |
|
79 |
|
simpr |
|
80 |
|
eqid |
|
81 |
|
eqid |
|
82 |
80 18 52 81 19
|
nmval2 |
|
83 |
78 79 82
|
syl2anc |
|
84 |
21
|
ad2antrr |
|
85 |
54
|
ad2antrr |
|
86 |
|
xmetsym |
|
87 |
84 79 85 86
|
syl3anc |
|
88 |
83 87
|
eqtrd |
|
89 |
88
|
breq1d |
|
90 |
89
|
biimpd |
|
91 |
64
|
ad2antrr |
|
92 |
|
elpreima |
|
93 |
91 65 92
|
3syl |
|
94 |
32
|
ad2antrr |
|
95 |
36
|
ad2antrr |
|
96 |
37 38
|
mp1i |
|
97 |
|
elbl |
|
98 |
94 95 96 97
|
syl3anc |
|
99 |
|
simpl2 |
|
100 |
99
|
elin1d |
|
101 |
100 25
|
syl |
|
102 |
101
|
adantr |
|
103 |
102
|
ad2antrr |
|
104 |
|
simplr |
|
105 |
104
|
adantr |
|
106 |
105 63
|
syl |
|
107 |
106
|
ffvelrnda |
|
108 |
|
eqid |
|
109 |
29 108
|
nmcl |
|
110 |
103 107 109
|
syl2anc |
|
111 |
|
1re |
|
112 |
|
ltle |
|
113 |
110 111 112
|
sylancl |
|
114 |
|
ngpgrp |
|
115 |
103 114
|
syl |
|
116 |
|
eqid |
|
117 |
108 29 34 116 30
|
nmval2 |
|
118 |
115 107 117
|
syl2anc |
|
119 |
|
xmetsym |
|
120 |
94 107 95 119
|
syl3anc |
|
121 |
118 120
|
eqtrd |
|
122 |
121
|
breq1d |
|
123 |
|
1red |
|
124 |
|
simplr |
|
125 |
110 123 124
|
lediv1d |
|
126 |
113 122 125
|
3imtr3d |
|
127 |
126
|
adantld |
|
128 |
98 127
|
sylbid |
|
129 |
128
|
adantld |
|
130 |
93 129
|
sylbid |
|
131 |
90 130
|
imim12d |
|
132 |
131
|
ralimdva |
|
133 |
|
rpxr |
|
134 |
|
blval |
|
135 |
21 54 133 134
|
syl2an3an |
|
136 |
135
|
sseq1d |
|
137 |
|
rabss |
|
138 |
136 137
|
bitrdi |
|
139 |
|
eqid |
|
140 |
12
|
adantr |
|
141 |
23
|
adantr |
|
142 |
|
rpreccl |
|
143 |
142
|
adantl |
|
144 |
143
|
rpxrd |
|
145 |
|
simpr |
|
146 |
|
simpl3 |
|
147 |
146
|
ad2antrr |
|
148 |
139 18 80 108 3 4 140 141 105 144 145 147
|
nmoleub2b |
|
149 |
132 138 148
|
3imtr4d |
|
150 |
75 102 56
|
3jca |
|
151 |
142
|
rpred |
|
152 |
139
|
bddnghm |
|
153 |
152
|
expr |
|
154 |
150 151 153
|
syl2an |
|
155 |
149 154
|
syld |
|
156 |
155
|
rexlimdva |
|
157 |
71 156
|
mpd |
|
158 |
157
|
ex |
|
159 |
11 158
|
impbid2 |
|
160 |
159
|
pm5.32da |
|
161 |
10 160
|
bitrd |
|