Metamath Proof Explorer


Theorem bddnghm

Description: A bounded group homomorphism is a normed group homomorphism. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Hypothesis nmofval.1 N=SnormOpT
Assertion bddnghm SNrmGrpTNrmGrpFSGrpHomTANFAFSNGHomT

Proof

Step Hyp Ref Expression
1 nmofval.1 N=SnormOpT
2 1 nmocl SNrmGrpTNrmGrpFSGrpHomTNF*
3 1 nmoge0 SNrmGrpTNrmGrpFSGrpHomT0NF
4 2 3 jca SNrmGrpTNrmGrpFSGrpHomTNF*0NF
5 xrrege0 NF*A0NFNFANF
6 5 an4s NF*0NFANFANF
7 4 6 sylan SNrmGrpTNrmGrpFSGrpHomTANFANF
8 1 isnghm2 SNrmGrpTNrmGrpFSGrpHomTFSNGHomTNF
9 8 adantr SNrmGrpTNrmGrpFSGrpHomTANFAFSNGHomTNF
10 7 9 mpbird SNrmGrpTNrmGrpFSGrpHomTANFAFSNGHomT