Metamath Proof Explorer


Theorem nmoge0

Description: The operator norm of an operator is nonnegative. (Contributed by Mario Carneiro, 18-Oct-2015)

Ref Expression
Hypothesis nmofval.1 N=SnormOpT
Assertion nmoge0 SNrmGrpTNrmGrpFSGrpHomT0NF

Proof

Step Hyp Ref Expression
1 nmofval.1 N=SnormOpT
2 elrege0 r0+∞r0r
3 2 simprbi r0+∞0r
4 3 adantl SNrmGrpTNrmGrpFSGrpHomTr0+∞0r
5 4 a1d SNrmGrpTNrmGrpFSGrpHomTr0+∞xBaseSnormTFxrnormSx0r
6 5 ralrimiva SNrmGrpTNrmGrpFSGrpHomTr0+∞xBaseSnormTFxrnormSx0r
7 0xr 0*
8 eqid BaseS=BaseS
9 eqid normS=normS
10 eqid normT=normT
11 1 8 9 10 nmogelb SNrmGrpTNrmGrpFSGrpHomT0*0NFr0+∞xBaseSnormTFxrnormSx0r
12 7 11 mpan2 SNrmGrpTNrmGrpFSGrpHomT0NFr0+∞xBaseSnormTFxrnormSx0r
13 6 12 mpbird SNrmGrpTNrmGrpFSGrpHomT0NF