| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmhmcn.j |  |-  J = ( TopOpen ` S ) | 
						
							| 2 |  | nmhmcn.k |  |-  K = ( TopOpen ` T ) | 
						
							| 3 |  | nmhmcn.g |  |-  G = ( Scalar ` S ) | 
						
							| 4 |  | nmhmcn.b |  |-  B = ( Base ` G ) | 
						
							| 5 |  | elinel1 |  |-  ( S e. ( NrmMod i^i CMod ) -> S e. NrmMod ) | 
						
							| 6 |  | elinel1 |  |-  ( T e. ( NrmMod i^i CMod ) -> T e. NrmMod ) | 
						
							| 7 |  | isnmhm |  |-  ( F e. ( S NMHom T ) <-> ( ( S e. NrmMod /\ T e. NrmMod ) /\ ( F e. ( S LMHom T ) /\ F e. ( S NGHom T ) ) ) ) | 
						
							| 8 | 7 | baib |  |-  ( ( S e. NrmMod /\ T e. NrmMod ) -> ( F e. ( S NMHom T ) <-> ( F e. ( S LMHom T ) /\ F e. ( S NGHom T ) ) ) ) | 
						
							| 9 | 5 6 8 | syl2an |  |-  ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) ) -> ( F e. ( S NMHom T ) <-> ( F e. ( S LMHom T ) /\ F e. ( S NGHom T ) ) ) ) | 
						
							| 10 | 9 | 3adant3 |  |-  ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) -> ( F e. ( S NMHom T ) <-> ( F e. ( S LMHom T ) /\ F e. ( S NGHom T ) ) ) ) | 
						
							| 11 | 1 2 | nghmcn |  |-  ( F e. ( S NGHom T ) -> F e. ( J Cn K ) ) | 
						
							| 12 |  | simpll1 |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> S e. ( NrmMod i^i CMod ) ) | 
						
							| 13 | 12 | elin1d |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> S e. NrmMod ) | 
						
							| 14 |  | nlmngp |  |-  ( S e. NrmMod -> S e. NrmGrp ) | 
						
							| 15 |  | ngpms |  |-  ( S e. NrmGrp -> S e. MetSp ) | 
						
							| 16 | 13 14 15 | 3syl |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> S e. MetSp ) | 
						
							| 17 |  | msxms |  |-  ( S e. MetSp -> S e. *MetSp ) | 
						
							| 18 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 19 |  | eqid |  |-  ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) = ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) | 
						
							| 20 | 18 19 | xmsxmet |  |-  ( S e. *MetSp -> ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) e. ( *Met ` ( Base ` S ) ) ) | 
						
							| 21 | 16 17 20 | 3syl |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) e. ( *Met ` ( Base ` S ) ) ) | 
						
							| 22 |  | simpr |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> F e. ( J Cn K ) ) | 
						
							| 23 |  | simpll2 |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> T e. ( NrmMod i^i CMod ) ) | 
						
							| 24 | 23 | elin1d |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> T e. NrmMod ) | 
						
							| 25 |  | nlmngp |  |-  ( T e. NrmMod -> T e. NrmGrp ) | 
						
							| 26 |  | ngpms |  |-  ( T e. NrmGrp -> T e. MetSp ) | 
						
							| 27 | 24 25 26 | 3syl |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> T e. MetSp ) | 
						
							| 28 |  | msxms |  |-  ( T e. MetSp -> T e. *MetSp ) | 
						
							| 29 |  | eqid |  |-  ( Base ` T ) = ( Base ` T ) | 
						
							| 30 |  | eqid |  |-  ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) = ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) | 
						
							| 31 | 29 30 | xmsxmet |  |-  ( T e. *MetSp -> ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( *Met ` ( Base ` T ) ) ) | 
						
							| 32 | 27 28 31 | 3syl |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( *Met ` ( Base ` T ) ) ) | 
						
							| 33 |  | nlmlmod |  |-  ( T e. NrmMod -> T e. LMod ) | 
						
							| 34 |  | eqid |  |-  ( 0g ` T ) = ( 0g ` T ) | 
						
							| 35 | 29 34 | lmod0vcl |  |-  ( T e. LMod -> ( 0g ` T ) e. ( Base ` T ) ) | 
						
							| 36 | 24 33 35 | 3syl |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( 0g ` T ) e. ( Base ` T ) ) | 
						
							| 37 |  | 1rp |  |-  1 e. RR+ | 
						
							| 38 |  | rpxr |  |-  ( 1 e. RR+ -> 1 e. RR* ) | 
						
							| 39 | 37 38 | mp1i |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> 1 e. RR* ) | 
						
							| 40 |  | eqid |  |-  ( MetOpen ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) = ( MetOpen ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) | 
						
							| 41 | 40 | blopn |  |-  ( ( ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( *Met ` ( Base ` T ) ) /\ ( 0g ` T ) e. ( Base ` T ) /\ 1 e. RR* ) -> ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) e. ( MetOpen ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) ) | 
						
							| 42 | 32 36 39 41 | syl3anc |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) e. ( MetOpen ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) ) | 
						
							| 43 | 2 29 30 | mstopn |  |-  ( T e. MetSp -> K = ( MetOpen ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) ) | 
						
							| 44 | 24 25 26 43 | 4syl |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> K = ( MetOpen ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) ) | 
						
							| 45 | 42 44 | eleqtrrd |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) e. K ) | 
						
							| 46 |  | cnima |  |-  ( ( F e. ( J Cn K ) /\ ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) e. K ) -> ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) e. J ) | 
						
							| 47 | 22 45 46 | syl2anc |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) e. J ) | 
						
							| 48 | 1 18 19 | mstopn |  |-  ( S e. MetSp -> J = ( MetOpen ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) ) | 
						
							| 49 | 13 14 15 48 | 4syl |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> J = ( MetOpen ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) ) | 
						
							| 50 | 47 49 | eleqtrd |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) e. ( MetOpen ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) ) | 
						
							| 51 |  | nlmlmod |  |-  ( S e. NrmMod -> S e. LMod ) | 
						
							| 52 |  | eqid |  |-  ( 0g ` S ) = ( 0g ` S ) | 
						
							| 53 | 18 52 | lmod0vcl |  |-  ( S e. LMod -> ( 0g ` S ) e. ( Base ` S ) ) | 
						
							| 54 | 13 51 53 | 3syl |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( 0g ` S ) e. ( Base ` S ) ) | 
						
							| 55 |  | lmghm |  |-  ( F e. ( S LMHom T ) -> F e. ( S GrpHom T ) ) | 
						
							| 56 | 55 | ad2antlr |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> F e. ( S GrpHom T ) ) | 
						
							| 57 | 52 34 | ghmid |  |-  ( F e. ( S GrpHom T ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) | 
						
							| 58 | 56 57 | syl |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) | 
						
							| 59 | 37 | a1i |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> 1 e. RR+ ) | 
						
							| 60 |  | blcntr |  |-  ( ( ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( *Met ` ( Base ` T ) ) /\ ( 0g ` T ) e. ( Base ` T ) /\ 1 e. RR+ ) -> ( 0g ` T ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) | 
						
							| 61 | 32 36 59 60 | syl3anc |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( 0g ` T ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) | 
						
							| 62 | 58 61 | eqeltrd |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( F ` ( 0g ` S ) ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) | 
						
							| 63 | 18 29 | lmhmf |  |-  ( F e. ( S LMHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) | 
						
							| 64 | 63 | ad2antlr |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) | 
						
							| 65 |  | ffn |  |-  ( F : ( Base ` S ) --> ( Base ` T ) -> F Fn ( Base ` S ) ) | 
						
							| 66 |  | elpreima |  |-  ( F Fn ( Base ` S ) -> ( ( 0g ` S ) e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) <-> ( ( 0g ` S ) e. ( Base ` S ) /\ ( F ` ( 0g ` S ) ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) ) | 
						
							| 67 | 64 65 66 | 3syl |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( ( 0g ` S ) e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) <-> ( ( 0g ` S ) e. ( Base ` S ) /\ ( F ` ( 0g ` S ) ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) ) | 
						
							| 68 | 54 62 67 | mpbir2and |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( 0g ` S ) e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) | 
						
							| 69 |  | eqid |  |-  ( MetOpen ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) = ( MetOpen ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) | 
						
							| 70 | 69 | mopni2 |  |-  ( ( ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) e. ( *Met ` ( Base ` S ) ) /\ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) e. ( MetOpen ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) /\ ( 0g ` S ) e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) -> E. x e. RR+ ( ( 0g ` S ) ( ball ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) x ) C_ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) | 
						
							| 71 | 21 50 68 70 | syl3anc |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> E. x e. RR+ ( ( 0g ` S ) ( ball ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) x ) C_ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) | 
						
							| 72 |  | simpl1 |  |-  ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) -> S e. ( NrmMod i^i CMod ) ) | 
						
							| 73 | 72 | elin1d |  |-  ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) -> S e. NrmMod ) | 
						
							| 74 | 73 14 | syl |  |-  ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) -> S e. NrmGrp ) | 
						
							| 75 | 74 | adantr |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> S e. NrmGrp ) | 
						
							| 76 | 75 | ad2antrr |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> S e. NrmGrp ) | 
						
							| 77 |  | ngpgrp |  |-  ( S e. NrmGrp -> S e. Grp ) | 
						
							| 78 | 76 77 | syl |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> S e. Grp ) | 
						
							| 79 |  | simpr |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> y e. ( Base ` S ) ) | 
						
							| 80 |  | eqid |  |-  ( norm ` S ) = ( norm ` S ) | 
						
							| 81 |  | eqid |  |-  ( dist ` S ) = ( dist ` S ) | 
						
							| 82 | 80 18 52 81 19 | nmval2 |  |-  ( ( S e. Grp /\ y e. ( Base ` S ) ) -> ( ( norm ` S ) ` y ) = ( y ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ( 0g ` S ) ) ) | 
						
							| 83 | 78 79 82 | syl2anc |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( norm ` S ) ` y ) = ( y ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ( 0g ` S ) ) ) | 
						
							| 84 | 21 | ad2antrr |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) e. ( *Met ` ( Base ` S ) ) ) | 
						
							| 85 | 54 | ad2antrr |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( 0g ` S ) e. ( Base ` S ) ) | 
						
							| 86 |  | xmetsym |  |-  ( ( ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) e. ( *Met ` ( Base ` S ) ) /\ y e. ( Base ` S ) /\ ( 0g ` S ) e. ( Base ` S ) ) -> ( y ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ( 0g ` S ) ) = ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) ) | 
						
							| 87 | 84 79 85 86 | syl3anc |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( y ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ( 0g ` S ) ) = ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) ) | 
						
							| 88 | 83 87 | eqtrd |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( norm ` S ) ` y ) = ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) ) | 
						
							| 89 | 88 | breq1d |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( ( norm ` S ) ` y ) < x <-> ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x ) ) | 
						
							| 90 | 89 | biimpd |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( ( norm ` S ) ` y ) < x -> ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x ) ) | 
						
							| 91 | 64 | ad2antrr |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) | 
						
							| 92 |  | elpreima |  |-  ( F Fn ( Base ` S ) -> ( y e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) <-> ( y e. ( Base ` S ) /\ ( F ` y ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) ) | 
						
							| 93 | 91 65 92 | 3syl |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( y e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) <-> ( y e. ( Base ` S ) /\ ( F ` y ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) ) | 
						
							| 94 | 32 | ad2antrr |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( *Met ` ( Base ` T ) ) ) | 
						
							| 95 | 36 | ad2antrr |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( 0g ` T ) e. ( Base ` T ) ) | 
						
							| 96 | 37 38 | mp1i |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> 1 e. RR* ) | 
						
							| 97 |  | elbl |  |-  ( ( ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( *Met ` ( Base ` T ) ) /\ ( 0g ` T ) e. ( Base ` T ) /\ 1 e. RR* ) -> ( ( F ` y ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) <-> ( ( F ` y ) e. ( Base ` T ) /\ ( ( 0g ` T ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( F ` y ) ) < 1 ) ) ) | 
						
							| 98 | 94 95 96 97 | syl3anc |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( F ` y ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) <-> ( ( F ` y ) e. ( Base ` T ) /\ ( ( 0g ` T ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( F ` y ) ) < 1 ) ) ) | 
						
							| 99 |  | simpl2 |  |-  ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) -> T e. ( NrmMod i^i CMod ) ) | 
						
							| 100 | 99 | elin1d |  |-  ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) -> T e. NrmMod ) | 
						
							| 101 | 100 25 | syl |  |-  ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) -> T e. NrmGrp ) | 
						
							| 102 | 101 | adantr |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> T e. NrmGrp ) | 
						
							| 103 | 102 | ad2antrr |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> T e. NrmGrp ) | 
						
							| 104 |  | simplr |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> F e. ( S LMHom T ) ) | 
						
							| 105 | 104 | adantr |  |-  ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> F e. ( S LMHom T ) ) | 
						
							| 106 | 105 63 | syl |  |-  ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> F : ( Base ` S ) --> ( Base ` T ) ) | 
						
							| 107 | 106 | ffvelcdmda |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( F ` y ) e. ( Base ` T ) ) | 
						
							| 108 |  | eqid |  |-  ( norm ` T ) = ( norm ` T ) | 
						
							| 109 | 29 108 | nmcl |  |-  ( ( T e. NrmGrp /\ ( F ` y ) e. ( Base ` T ) ) -> ( ( norm ` T ) ` ( F ` y ) ) e. RR ) | 
						
							| 110 | 103 107 109 | syl2anc |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( norm ` T ) ` ( F ` y ) ) e. RR ) | 
						
							| 111 |  | 1re |  |-  1 e. RR | 
						
							| 112 |  | ltle |  |-  ( ( ( ( norm ` T ) ` ( F ` y ) ) e. RR /\ 1 e. RR ) -> ( ( ( norm ` T ) ` ( F ` y ) ) < 1 -> ( ( norm ` T ) ` ( F ` y ) ) <_ 1 ) ) | 
						
							| 113 | 110 111 112 | sylancl |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( ( norm ` T ) ` ( F ` y ) ) < 1 -> ( ( norm ` T ) ` ( F ` y ) ) <_ 1 ) ) | 
						
							| 114 |  | ngpgrp |  |-  ( T e. NrmGrp -> T e. Grp ) | 
						
							| 115 | 103 114 | syl |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> T e. Grp ) | 
						
							| 116 |  | eqid |  |-  ( dist ` T ) = ( dist ` T ) | 
						
							| 117 | 108 29 34 116 30 | nmval2 |  |-  ( ( T e. Grp /\ ( F ` y ) e. ( Base ` T ) ) -> ( ( norm ` T ) ` ( F ` y ) ) = ( ( F ` y ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( 0g ` T ) ) ) | 
						
							| 118 | 115 107 117 | syl2anc |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( norm ` T ) ` ( F ` y ) ) = ( ( F ` y ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( 0g ` T ) ) ) | 
						
							| 119 |  | xmetsym |  |-  ( ( ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( *Met ` ( Base ` T ) ) /\ ( F ` y ) e. ( Base ` T ) /\ ( 0g ` T ) e. ( Base ` T ) ) -> ( ( F ` y ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( 0g ` T ) ) = ( ( 0g ` T ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( F ` y ) ) ) | 
						
							| 120 | 94 107 95 119 | syl3anc |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( F ` y ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( 0g ` T ) ) = ( ( 0g ` T ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( F ` y ) ) ) | 
						
							| 121 | 118 120 | eqtrd |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( norm ` T ) ` ( F ` y ) ) = ( ( 0g ` T ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( F ` y ) ) ) | 
						
							| 122 | 121 | breq1d |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( ( norm ` T ) ` ( F ` y ) ) < 1 <-> ( ( 0g ` T ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( F ` y ) ) < 1 ) ) | 
						
							| 123 |  | 1red |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> 1 e. RR ) | 
						
							| 124 |  | simplr |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> x e. RR+ ) | 
						
							| 125 | 110 123 124 | lediv1d |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( ( norm ` T ) ` ( F ` y ) ) <_ 1 <-> ( ( ( norm ` T ) ` ( F ` y ) ) / x ) <_ ( 1 / x ) ) ) | 
						
							| 126 | 113 122 125 | 3imtr3d |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( ( 0g ` T ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( F ` y ) ) < 1 -> ( ( ( norm ` T ) ` ( F ` y ) ) / x ) <_ ( 1 / x ) ) ) | 
						
							| 127 | 126 | adantld |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( ( F ` y ) e. ( Base ` T ) /\ ( ( 0g ` T ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( F ` y ) ) < 1 ) -> ( ( ( norm ` T ) ` ( F ` y ) ) / x ) <_ ( 1 / x ) ) ) | 
						
							| 128 | 98 127 | sylbid |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( F ` y ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) -> ( ( ( norm ` T ) ` ( F ` y ) ) / x ) <_ ( 1 / x ) ) ) | 
						
							| 129 | 128 | adantld |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( y e. ( Base ` S ) /\ ( F ` y ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) -> ( ( ( norm ` T ) ` ( F ` y ) ) / x ) <_ ( 1 / x ) ) ) | 
						
							| 130 | 93 129 | sylbid |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( y e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) -> ( ( ( norm ` T ) ` ( F ` y ) ) / x ) <_ ( 1 / x ) ) ) | 
						
							| 131 | 90 130 | imim12d |  |-  ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x -> y e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) -> ( ( ( norm ` S ) ` y ) < x -> ( ( ( norm ` T ) ` ( F ` y ) ) / x ) <_ ( 1 / x ) ) ) ) | 
						
							| 132 | 131 | ralimdva |  |-  ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( A. y e. ( Base ` S ) ( ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x -> y e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) -> A. y e. ( Base ` S ) ( ( ( norm ` S ) ` y ) < x -> ( ( ( norm ` T ) ` ( F ` y ) ) / x ) <_ ( 1 / x ) ) ) ) | 
						
							| 133 |  | rpxr |  |-  ( x e. RR+ -> x e. RR* ) | 
						
							| 134 |  | blval |  |-  ( ( ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) e. ( *Met ` ( Base ` S ) ) /\ ( 0g ` S ) e. ( Base ` S ) /\ x e. RR* ) -> ( ( 0g ` S ) ( ball ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) x ) = { y e. ( Base ` S ) | ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x } ) | 
						
							| 135 | 21 54 133 134 | syl2an3an |  |-  ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( ( 0g ` S ) ( ball ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) x ) = { y e. ( Base ` S ) | ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x } ) | 
						
							| 136 | 135 | sseq1d |  |-  ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( ( ( 0g ` S ) ( ball ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) x ) C_ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) <-> { y e. ( Base ` S ) | ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x } C_ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) ) | 
						
							| 137 |  | rabss |  |-  ( { y e. ( Base ` S ) | ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x } C_ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) <-> A. y e. ( Base ` S ) ( ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x -> y e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) ) | 
						
							| 138 | 136 137 | bitrdi |  |-  ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( ( ( 0g ` S ) ( ball ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) x ) C_ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) <-> A. y e. ( Base ` S ) ( ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x -> y e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) ) ) | 
						
							| 139 |  | eqid |  |-  ( S normOp T ) = ( S normOp T ) | 
						
							| 140 | 12 | adantr |  |-  ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> S e. ( NrmMod i^i CMod ) ) | 
						
							| 141 | 23 | adantr |  |-  ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> T e. ( NrmMod i^i CMod ) ) | 
						
							| 142 |  | rpreccl |  |-  ( x e. RR+ -> ( 1 / x ) e. RR+ ) | 
						
							| 143 | 142 | adantl |  |-  ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( 1 / x ) e. RR+ ) | 
						
							| 144 | 143 | rpxrd |  |-  ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( 1 / x ) e. RR* ) | 
						
							| 145 |  | simpr |  |-  ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> x e. RR+ ) | 
						
							| 146 |  | simpl3 |  |-  ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) -> QQ C_ B ) | 
						
							| 147 | 146 | ad2antrr |  |-  ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> QQ C_ B ) | 
						
							| 148 | 139 18 80 108 3 4 140 141 105 144 145 147 | nmoleub2b |  |-  ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( ( ( S normOp T ) ` F ) <_ ( 1 / x ) <-> A. y e. ( Base ` S ) ( ( ( norm ` S ) ` y ) < x -> ( ( ( norm ` T ) ` ( F ` y ) ) / x ) <_ ( 1 / x ) ) ) ) | 
						
							| 149 | 132 138 148 | 3imtr4d |  |-  ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( ( ( 0g ` S ) ( ball ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) x ) C_ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) -> ( ( S normOp T ) ` F ) <_ ( 1 / x ) ) ) | 
						
							| 150 | 75 102 56 | 3jca |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) ) | 
						
							| 151 | 142 | rpred |  |-  ( x e. RR+ -> ( 1 / x ) e. RR ) | 
						
							| 152 | 139 | bddnghm |  |-  ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( ( 1 / x ) e. RR /\ ( ( S normOp T ) ` F ) <_ ( 1 / x ) ) ) -> F e. ( S NGHom T ) ) | 
						
							| 153 | 152 | expr |  |-  ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( 1 / x ) e. RR ) -> ( ( ( S normOp T ) ` F ) <_ ( 1 / x ) -> F e. ( S NGHom T ) ) ) | 
						
							| 154 | 150 151 153 | syl2an |  |-  ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( ( ( S normOp T ) ` F ) <_ ( 1 / x ) -> F e. ( S NGHom T ) ) ) | 
						
							| 155 | 149 154 | syld |  |-  ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( ( ( 0g ` S ) ( ball ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) x ) C_ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) -> F e. ( S NGHom T ) ) ) | 
						
							| 156 | 155 | rexlimdva |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( E. x e. RR+ ( ( 0g ` S ) ( ball ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) x ) C_ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) -> F e. ( S NGHom T ) ) ) | 
						
							| 157 | 71 156 | mpd |  |-  ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> F e. ( S NGHom T ) ) | 
						
							| 158 | 157 | ex |  |-  ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) -> ( F e. ( J Cn K ) -> F e. ( S NGHom T ) ) ) | 
						
							| 159 | 11 158 | impbid2 |  |-  ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) -> ( F e. ( S NGHom T ) <-> F e. ( J Cn K ) ) ) | 
						
							| 160 | 159 | pm5.32da |  |-  ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) -> ( ( F e. ( S LMHom T ) /\ F e. ( S NGHom T ) ) <-> ( F e. ( S LMHom T ) /\ F e. ( J Cn K ) ) ) ) | 
						
							| 161 | 10 160 | bitrd |  |-  ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) -> ( F e. ( S NMHom T ) <-> ( F e. ( S LMHom T ) /\ F e. ( J Cn K ) ) ) ) |