| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmhmcn.j |
|- J = ( TopOpen ` S ) |
| 2 |
|
nmhmcn.k |
|- K = ( TopOpen ` T ) |
| 3 |
|
nmhmcn.g |
|- G = ( Scalar ` S ) |
| 4 |
|
nmhmcn.b |
|- B = ( Base ` G ) |
| 5 |
|
elinel1 |
|- ( S e. ( NrmMod i^i CMod ) -> S e. NrmMod ) |
| 6 |
|
elinel1 |
|- ( T e. ( NrmMod i^i CMod ) -> T e. NrmMod ) |
| 7 |
|
isnmhm |
|- ( F e. ( S NMHom T ) <-> ( ( S e. NrmMod /\ T e. NrmMod ) /\ ( F e. ( S LMHom T ) /\ F e. ( S NGHom T ) ) ) ) |
| 8 |
7
|
baib |
|- ( ( S e. NrmMod /\ T e. NrmMod ) -> ( F e. ( S NMHom T ) <-> ( F e. ( S LMHom T ) /\ F e. ( S NGHom T ) ) ) ) |
| 9 |
5 6 8
|
syl2an |
|- ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) ) -> ( F e. ( S NMHom T ) <-> ( F e. ( S LMHom T ) /\ F e. ( S NGHom T ) ) ) ) |
| 10 |
9
|
3adant3 |
|- ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) -> ( F e. ( S NMHom T ) <-> ( F e. ( S LMHom T ) /\ F e. ( S NGHom T ) ) ) ) |
| 11 |
1 2
|
nghmcn |
|- ( F e. ( S NGHom T ) -> F e. ( J Cn K ) ) |
| 12 |
|
simpll1 |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> S e. ( NrmMod i^i CMod ) ) |
| 13 |
12
|
elin1d |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> S e. NrmMod ) |
| 14 |
|
nlmngp |
|- ( S e. NrmMod -> S e. NrmGrp ) |
| 15 |
|
ngpms |
|- ( S e. NrmGrp -> S e. MetSp ) |
| 16 |
13 14 15
|
3syl |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> S e. MetSp ) |
| 17 |
|
msxms |
|- ( S e. MetSp -> S e. *MetSp ) |
| 18 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 19 |
|
eqid |
|- ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) = ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) |
| 20 |
18 19
|
xmsxmet |
|- ( S e. *MetSp -> ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) e. ( *Met ` ( Base ` S ) ) ) |
| 21 |
16 17 20
|
3syl |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) e. ( *Met ` ( Base ` S ) ) ) |
| 22 |
|
simpr |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> F e. ( J Cn K ) ) |
| 23 |
|
simpll2 |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> T e. ( NrmMod i^i CMod ) ) |
| 24 |
23
|
elin1d |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> T e. NrmMod ) |
| 25 |
|
nlmngp |
|- ( T e. NrmMod -> T e. NrmGrp ) |
| 26 |
|
ngpms |
|- ( T e. NrmGrp -> T e. MetSp ) |
| 27 |
24 25 26
|
3syl |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> T e. MetSp ) |
| 28 |
|
msxms |
|- ( T e. MetSp -> T e. *MetSp ) |
| 29 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
| 30 |
|
eqid |
|- ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) = ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) |
| 31 |
29 30
|
xmsxmet |
|- ( T e. *MetSp -> ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( *Met ` ( Base ` T ) ) ) |
| 32 |
27 28 31
|
3syl |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( *Met ` ( Base ` T ) ) ) |
| 33 |
|
nlmlmod |
|- ( T e. NrmMod -> T e. LMod ) |
| 34 |
|
eqid |
|- ( 0g ` T ) = ( 0g ` T ) |
| 35 |
29 34
|
lmod0vcl |
|- ( T e. LMod -> ( 0g ` T ) e. ( Base ` T ) ) |
| 36 |
24 33 35
|
3syl |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( 0g ` T ) e. ( Base ` T ) ) |
| 37 |
|
1rp |
|- 1 e. RR+ |
| 38 |
|
rpxr |
|- ( 1 e. RR+ -> 1 e. RR* ) |
| 39 |
37 38
|
mp1i |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> 1 e. RR* ) |
| 40 |
|
eqid |
|- ( MetOpen ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) = ( MetOpen ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) |
| 41 |
40
|
blopn |
|- ( ( ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( *Met ` ( Base ` T ) ) /\ ( 0g ` T ) e. ( Base ` T ) /\ 1 e. RR* ) -> ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) e. ( MetOpen ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) ) |
| 42 |
32 36 39 41
|
syl3anc |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) e. ( MetOpen ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) ) |
| 43 |
2 29 30
|
mstopn |
|- ( T e. MetSp -> K = ( MetOpen ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) ) |
| 44 |
24 25 26 43
|
4syl |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> K = ( MetOpen ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) ) |
| 45 |
42 44
|
eleqtrrd |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) e. K ) |
| 46 |
|
cnima |
|- ( ( F e. ( J Cn K ) /\ ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) e. K ) -> ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) e. J ) |
| 47 |
22 45 46
|
syl2anc |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) e. J ) |
| 48 |
1 18 19
|
mstopn |
|- ( S e. MetSp -> J = ( MetOpen ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) ) |
| 49 |
13 14 15 48
|
4syl |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> J = ( MetOpen ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) ) |
| 50 |
47 49
|
eleqtrd |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) e. ( MetOpen ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) ) |
| 51 |
|
nlmlmod |
|- ( S e. NrmMod -> S e. LMod ) |
| 52 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
| 53 |
18 52
|
lmod0vcl |
|- ( S e. LMod -> ( 0g ` S ) e. ( Base ` S ) ) |
| 54 |
13 51 53
|
3syl |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( 0g ` S ) e. ( Base ` S ) ) |
| 55 |
|
lmghm |
|- ( F e. ( S LMHom T ) -> F e. ( S GrpHom T ) ) |
| 56 |
55
|
ad2antlr |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> F e. ( S GrpHom T ) ) |
| 57 |
52 34
|
ghmid |
|- ( F e. ( S GrpHom T ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
| 58 |
56 57
|
syl |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
| 59 |
37
|
a1i |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> 1 e. RR+ ) |
| 60 |
|
blcntr |
|- ( ( ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( *Met ` ( Base ` T ) ) /\ ( 0g ` T ) e. ( Base ` T ) /\ 1 e. RR+ ) -> ( 0g ` T ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) |
| 61 |
32 36 59 60
|
syl3anc |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( 0g ` T ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) |
| 62 |
58 61
|
eqeltrd |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( F ` ( 0g ` S ) ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) |
| 63 |
18 29
|
lmhmf |
|- ( F e. ( S LMHom T ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 64 |
63
|
ad2antlr |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 65 |
|
ffn |
|- ( F : ( Base ` S ) --> ( Base ` T ) -> F Fn ( Base ` S ) ) |
| 66 |
|
elpreima |
|- ( F Fn ( Base ` S ) -> ( ( 0g ` S ) e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) <-> ( ( 0g ` S ) e. ( Base ` S ) /\ ( F ` ( 0g ` S ) ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) ) |
| 67 |
64 65 66
|
3syl |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( ( 0g ` S ) e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) <-> ( ( 0g ` S ) e. ( Base ` S ) /\ ( F ` ( 0g ` S ) ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) ) |
| 68 |
54 62 67
|
mpbir2and |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( 0g ` S ) e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) |
| 69 |
|
eqid |
|- ( MetOpen ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) = ( MetOpen ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) |
| 70 |
69
|
mopni2 |
|- ( ( ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) e. ( *Met ` ( Base ` S ) ) /\ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) e. ( MetOpen ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) /\ ( 0g ` S ) e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) -> E. x e. RR+ ( ( 0g ` S ) ( ball ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) x ) C_ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) |
| 71 |
21 50 68 70
|
syl3anc |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> E. x e. RR+ ( ( 0g ` S ) ( ball ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) x ) C_ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) |
| 72 |
|
simpl1 |
|- ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) -> S e. ( NrmMod i^i CMod ) ) |
| 73 |
72
|
elin1d |
|- ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) -> S e. NrmMod ) |
| 74 |
73 14
|
syl |
|- ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) -> S e. NrmGrp ) |
| 75 |
74
|
adantr |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> S e. NrmGrp ) |
| 76 |
75
|
ad2antrr |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> S e. NrmGrp ) |
| 77 |
|
ngpgrp |
|- ( S e. NrmGrp -> S e. Grp ) |
| 78 |
76 77
|
syl |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> S e. Grp ) |
| 79 |
|
simpr |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> y e. ( Base ` S ) ) |
| 80 |
|
eqid |
|- ( norm ` S ) = ( norm ` S ) |
| 81 |
|
eqid |
|- ( dist ` S ) = ( dist ` S ) |
| 82 |
80 18 52 81 19
|
nmval2 |
|- ( ( S e. Grp /\ y e. ( Base ` S ) ) -> ( ( norm ` S ) ` y ) = ( y ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ( 0g ` S ) ) ) |
| 83 |
78 79 82
|
syl2anc |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( norm ` S ) ` y ) = ( y ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ( 0g ` S ) ) ) |
| 84 |
21
|
ad2antrr |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) e. ( *Met ` ( Base ` S ) ) ) |
| 85 |
54
|
ad2antrr |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( 0g ` S ) e. ( Base ` S ) ) |
| 86 |
|
xmetsym |
|- ( ( ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) e. ( *Met ` ( Base ` S ) ) /\ y e. ( Base ` S ) /\ ( 0g ` S ) e. ( Base ` S ) ) -> ( y ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ( 0g ` S ) ) = ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) ) |
| 87 |
84 79 85 86
|
syl3anc |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( y ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ( 0g ` S ) ) = ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) ) |
| 88 |
83 87
|
eqtrd |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( norm ` S ) ` y ) = ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) ) |
| 89 |
88
|
breq1d |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( ( norm ` S ) ` y ) < x <-> ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x ) ) |
| 90 |
89
|
biimpd |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( ( norm ` S ) ` y ) < x -> ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x ) ) |
| 91 |
64
|
ad2antrr |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 92 |
|
elpreima |
|- ( F Fn ( Base ` S ) -> ( y e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) <-> ( y e. ( Base ` S ) /\ ( F ` y ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) ) |
| 93 |
91 65 92
|
3syl |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( y e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) <-> ( y e. ( Base ` S ) /\ ( F ` y ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) ) |
| 94 |
32
|
ad2antrr |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( *Met ` ( Base ` T ) ) ) |
| 95 |
36
|
ad2antrr |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( 0g ` T ) e. ( Base ` T ) ) |
| 96 |
37 38
|
mp1i |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> 1 e. RR* ) |
| 97 |
|
elbl |
|- ( ( ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( *Met ` ( Base ` T ) ) /\ ( 0g ` T ) e. ( Base ` T ) /\ 1 e. RR* ) -> ( ( F ` y ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) <-> ( ( F ` y ) e. ( Base ` T ) /\ ( ( 0g ` T ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( F ` y ) ) < 1 ) ) ) |
| 98 |
94 95 96 97
|
syl3anc |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( F ` y ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) <-> ( ( F ` y ) e. ( Base ` T ) /\ ( ( 0g ` T ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( F ` y ) ) < 1 ) ) ) |
| 99 |
|
simpl2 |
|- ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) -> T e. ( NrmMod i^i CMod ) ) |
| 100 |
99
|
elin1d |
|- ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) -> T e. NrmMod ) |
| 101 |
100 25
|
syl |
|- ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) -> T e. NrmGrp ) |
| 102 |
101
|
adantr |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> T e. NrmGrp ) |
| 103 |
102
|
ad2antrr |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> T e. NrmGrp ) |
| 104 |
|
simplr |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> F e. ( S LMHom T ) ) |
| 105 |
104
|
adantr |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> F e. ( S LMHom T ) ) |
| 106 |
105 63
|
syl |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 107 |
106
|
ffvelcdmda |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( F ` y ) e. ( Base ` T ) ) |
| 108 |
|
eqid |
|- ( norm ` T ) = ( norm ` T ) |
| 109 |
29 108
|
nmcl |
|- ( ( T e. NrmGrp /\ ( F ` y ) e. ( Base ` T ) ) -> ( ( norm ` T ) ` ( F ` y ) ) e. RR ) |
| 110 |
103 107 109
|
syl2anc |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( norm ` T ) ` ( F ` y ) ) e. RR ) |
| 111 |
|
1re |
|- 1 e. RR |
| 112 |
|
ltle |
|- ( ( ( ( norm ` T ) ` ( F ` y ) ) e. RR /\ 1 e. RR ) -> ( ( ( norm ` T ) ` ( F ` y ) ) < 1 -> ( ( norm ` T ) ` ( F ` y ) ) <_ 1 ) ) |
| 113 |
110 111 112
|
sylancl |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( ( norm ` T ) ` ( F ` y ) ) < 1 -> ( ( norm ` T ) ` ( F ` y ) ) <_ 1 ) ) |
| 114 |
|
ngpgrp |
|- ( T e. NrmGrp -> T e. Grp ) |
| 115 |
103 114
|
syl |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> T e. Grp ) |
| 116 |
|
eqid |
|- ( dist ` T ) = ( dist ` T ) |
| 117 |
108 29 34 116 30
|
nmval2 |
|- ( ( T e. Grp /\ ( F ` y ) e. ( Base ` T ) ) -> ( ( norm ` T ) ` ( F ` y ) ) = ( ( F ` y ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( 0g ` T ) ) ) |
| 118 |
115 107 117
|
syl2anc |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( norm ` T ) ` ( F ` y ) ) = ( ( F ` y ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( 0g ` T ) ) ) |
| 119 |
|
xmetsym |
|- ( ( ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) e. ( *Met ` ( Base ` T ) ) /\ ( F ` y ) e. ( Base ` T ) /\ ( 0g ` T ) e. ( Base ` T ) ) -> ( ( F ` y ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( 0g ` T ) ) = ( ( 0g ` T ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( F ` y ) ) ) |
| 120 |
94 107 95 119
|
syl3anc |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( F ` y ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( 0g ` T ) ) = ( ( 0g ` T ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( F ` y ) ) ) |
| 121 |
118 120
|
eqtrd |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( norm ` T ) ` ( F ` y ) ) = ( ( 0g ` T ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( F ` y ) ) ) |
| 122 |
121
|
breq1d |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( ( norm ` T ) ` ( F ` y ) ) < 1 <-> ( ( 0g ` T ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( F ` y ) ) < 1 ) ) |
| 123 |
|
1red |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> 1 e. RR ) |
| 124 |
|
simplr |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> x e. RR+ ) |
| 125 |
110 123 124
|
lediv1d |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( ( norm ` T ) ` ( F ` y ) ) <_ 1 <-> ( ( ( norm ` T ) ` ( F ` y ) ) / x ) <_ ( 1 / x ) ) ) |
| 126 |
113 122 125
|
3imtr3d |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( ( 0g ` T ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( F ` y ) ) < 1 -> ( ( ( norm ` T ) ` ( F ` y ) ) / x ) <_ ( 1 / x ) ) ) |
| 127 |
126
|
adantld |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( ( F ` y ) e. ( Base ` T ) /\ ( ( 0g ` T ) ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ( F ` y ) ) < 1 ) -> ( ( ( norm ` T ) ` ( F ` y ) ) / x ) <_ ( 1 / x ) ) ) |
| 128 |
98 127
|
sylbid |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( F ` y ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) -> ( ( ( norm ` T ) ` ( F ` y ) ) / x ) <_ ( 1 / x ) ) ) |
| 129 |
128
|
adantld |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( y e. ( Base ` S ) /\ ( F ` y ) e. ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) -> ( ( ( norm ` T ) ` ( F ` y ) ) / x ) <_ ( 1 / x ) ) ) |
| 130 |
93 129
|
sylbid |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( y e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) -> ( ( ( norm ` T ) ` ( F ` y ) ) / x ) <_ ( 1 / x ) ) ) |
| 131 |
90 130
|
imim12d |
|- ( ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) /\ y e. ( Base ` S ) ) -> ( ( ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x -> y e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) -> ( ( ( norm ` S ) ` y ) < x -> ( ( ( norm ` T ) ` ( F ` y ) ) / x ) <_ ( 1 / x ) ) ) ) |
| 132 |
131
|
ralimdva |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( A. y e. ( Base ` S ) ( ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x -> y e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) -> A. y e. ( Base ` S ) ( ( ( norm ` S ) ` y ) < x -> ( ( ( norm ` T ) ` ( F ` y ) ) / x ) <_ ( 1 / x ) ) ) ) |
| 133 |
|
rpxr |
|- ( x e. RR+ -> x e. RR* ) |
| 134 |
|
blval |
|- ( ( ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) e. ( *Met ` ( Base ` S ) ) /\ ( 0g ` S ) e. ( Base ` S ) /\ x e. RR* ) -> ( ( 0g ` S ) ( ball ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) x ) = { y e. ( Base ` S ) | ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x } ) |
| 135 |
21 54 133 134
|
syl2an3an |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( ( 0g ` S ) ( ball ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) x ) = { y e. ( Base ` S ) | ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x } ) |
| 136 |
135
|
sseq1d |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( ( ( 0g ` S ) ( ball ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) x ) C_ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) <-> { y e. ( Base ` S ) | ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x } C_ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) ) |
| 137 |
|
rabss |
|- ( { y e. ( Base ` S ) | ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x } C_ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) <-> A. y e. ( Base ` S ) ( ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x -> y e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) ) |
| 138 |
136 137
|
bitrdi |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( ( ( 0g ` S ) ( ball ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) x ) C_ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) <-> A. y e. ( Base ` S ) ( ( ( 0g ` S ) ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) y ) < x -> y e. ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) ) ) ) |
| 139 |
|
eqid |
|- ( S normOp T ) = ( S normOp T ) |
| 140 |
12
|
adantr |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> S e. ( NrmMod i^i CMod ) ) |
| 141 |
23
|
adantr |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> T e. ( NrmMod i^i CMod ) ) |
| 142 |
|
rpreccl |
|- ( x e. RR+ -> ( 1 / x ) e. RR+ ) |
| 143 |
142
|
adantl |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( 1 / x ) e. RR+ ) |
| 144 |
143
|
rpxrd |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( 1 / x ) e. RR* ) |
| 145 |
|
simpr |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> x e. RR+ ) |
| 146 |
|
simpl3 |
|- ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) -> QQ C_ B ) |
| 147 |
146
|
ad2antrr |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> QQ C_ B ) |
| 148 |
139 18 80 108 3 4 140 141 105 144 145 147
|
nmoleub2b |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( ( ( S normOp T ) ` F ) <_ ( 1 / x ) <-> A. y e. ( Base ` S ) ( ( ( norm ` S ) ` y ) < x -> ( ( ( norm ` T ) ` ( F ` y ) ) / x ) <_ ( 1 / x ) ) ) ) |
| 149 |
132 138 148
|
3imtr4d |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( ( ( 0g ` S ) ( ball ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) x ) C_ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) -> ( ( S normOp T ) ` F ) <_ ( 1 / x ) ) ) |
| 150 |
75 102 56
|
3jca |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) ) |
| 151 |
142
|
rpred |
|- ( x e. RR+ -> ( 1 / x ) e. RR ) |
| 152 |
139
|
bddnghm |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( ( 1 / x ) e. RR /\ ( ( S normOp T ) ` F ) <_ ( 1 / x ) ) ) -> F e. ( S NGHom T ) ) |
| 153 |
152
|
expr |
|- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( 1 / x ) e. RR ) -> ( ( ( S normOp T ) ` F ) <_ ( 1 / x ) -> F e. ( S NGHom T ) ) ) |
| 154 |
150 151 153
|
syl2an |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( ( ( S normOp T ) ` F ) <_ ( 1 / x ) -> F e. ( S NGHom T ) ) ) |
| 155 |
149 154
|
syld |
|- ( ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) /\ x e. RR+ ) -> ( ( ( 0g ` S ) ( ball ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) x ) C_ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) -> F e. ( S NGHom T ) ) ) |
| 156 |
155
|
rexlimdva |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> ( E. x e. RR+ ( ( 0g ` S ) ( ball ` ( ( dist ` S ) |` ( ( Base ` S ) X. ( Base ` S ) ) ) ) x ) C_ ( `' F " ( ( 0g ` T ) ( ball ` ( ( dist ` T ) |` ( ( Base ` T ) X. ( Base ` T ) ) ) ) 1 ) ) -> F e. ( S NGHom T ) ) ) |
| 157 |
71 156
|
mpd |
|- ( ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) /\ F e. ( J Cn K ) ) -> F e. ( S NGHom T ) ) |
| 158 |
157
|
ex |
|- ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) -> ( F e. ( J Cn K ) -> F e. ( S NGHom T ) ) ) |
| 159 |
11 158
|
impbid2 |
|- ( ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) /\ F e. ( S LMHom T ) ) -> ( F e. ( S NGHom T ) <-> F e. ( J Cn K ) ) ) |
| 160 |
159
|
pm5.32da |
|- ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) -> ( ( F e. ( S LMHom T ) /\ F e. ( S NGHom T ) ) <-> ( F e. ( S LMHom T ) /\ F e. ( J Cn K ) ) ) ) |
| 161 |
10 160
|
bitrd |
|- ( ( S e. ( NrmMod i^i CMod ) /\ T e. ( NrmMod i^i CMod ) /\ QQ C_ B ) -> ( F e. ( S NMHom T ) <-> ( F e. ( S LMHom T ) /\ F e. ( J Cn K ) ) ) ) |