| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmfval2.n |  |-  N = ( norm ` W ) | 
						
							| 2 |  | nmfval2.x |  |-  X = ( Base ` W ) | 
						
							| 3 |  | nmfval2.z |  |-  .0. = ( 0g ` W ) | 
						
							| 4 |  | nmfval2.d |  |-  D = ( dist ` W ) | 
						
							| 5 |  | nmfval2.e |  |-  E = ( D |` ( X X. X ) ) | 
						
							| 6 | 1 2 3 4 | nmval |  |-  ( A e. X -> ( N ` A ) = ( A D .0. ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( W e. Grp /\ A e. X ) -> ( N ` A ) = ( A D .0. ) ) | 
						
							| 8 | 5 | oveqi |  |-  ( A E .0. ) = ( A ( D |` ( X X. X ) ) .0. ) | 
						
							| 9 |  | id |  |-  ( A e. X -> A e. X ) | 
						
							| 10 | 2 3 | grpidcl |  |-  ( W e. Grp -> .0. e. X ) | 
						
							| 11 |  | ovres |  |-  ( ( A e. X /\ .0. e. X ) -> ( A ( D |` ( X X. X ) ) .0. ) = ( A D .0. ) ) | 
						
							| 12 | 9 10 11 | syl2anr |  |-  ( ( W e. Grp /\ A e. X ) -> ( A ( D |` ( X X. X ) ) .0. ) = ( A D .0. ) ) | 
						
							| 13 | 8 12 | eqtr2id |  |-  ( ( W e. Grp /\ A e. X ) -> ( A D .0. ) = ( A E .0. ) ) | 
						
							| 14 | 7 13 | eqtrd |  |-  ( ( W e. Grp /\ A e. X ) -> ( N ` A ) = ( A E .0. ) ) |