Step |
Hyp |
Ref |
Expression |
1 |
|
blval |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( P ( ball ` D ) R ) = { x e. X | ( P D x ) < R } ) |
2 |
1
|
eleq2d |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( A e. ( P ( ball ` D ) R ) <-> A e. { x e. X | ( P D x ) < R } ) ) |
3 |
|
oveq2 |
|- ( x = A -> ( P D x ) = ( P D A ) ) |
4 |
3
|
breq1d |
|- ( x = A -> ( ( P D x ) < R <-> ( P D A ) < R ) ) |
5 |
4
|
elrab |
|- ( A e. { x e. X | ( P D x ) < R } <-> ( A e. X /\ ( P D A ) < R ) ) |
6 |
2 5
|
bitrdi |
|- ( ( D e. ( *Met ` X ) /\ P e. X /\ R e. RR* ) -> ( A e. ( P ( ball ` D ) R ) <-> ( A e. X /\ ( P D A ) < R ) ) ) |