| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmoleub2.n | ⊢ 𝑁  =  ( 𝑆  normOp  𝑇 ) | 
						
							| 2 |  | nmoleub2.v | ⊢ 𝑉  =  ( Base ‘ 𝑆 ) | 
						
							| 3 |  | nmoleub2.l | ⊢ 𝐿  =  ( norm ‘ 𝑆 ) | 
						
							| 4 |  | nmoleub2.m | ⊢ 𝑀  =  ( norm ‘ 𝑇 ) | 
						
							| 5 |  | nmoleub2.g | ⊢ 𝐺  =  ( Scalar ‘ 𝑆 ) | 
						
							| 6 |  | nmoleub2.w | ⊢ 𝐾  =  ( Base ‘ 𝐺 ) | 
						
							| 7 |  | nmoleub2.s | ⊢ ( 𝜑  →  𝑆  ∈  ( NrmMod  ∩  ℂMod ) ) | 
						
							| 8 |  | nmoleub2.t | ⊢ ( 𝜑  →  𝑇  ∈  ( NrmMod  ∩  ℂMod ) ) | 
						
							| 9 |  | nmoleub2.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑆  LMHom  𝑇 ) ) | 
						
							| 10 |  | nmoleub2.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ* ) | 
						
							| 11 |  | nmoleub2.r | ⊢ ( 𝜑  →  𝑅  ∈  ℝ+ ) | 
						
							| 12 |  | nmoleub2lem.5 | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( 𝜓  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  →  0  ≤  𝐴 ) | 
						
							| 13 |  | nmoleub2lem.6 | ⊢ ( ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( 𝜓  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  ∧  ( 𝑦  ∈  𝑉  ∧  𝑦  ≠  ( 0g ‘ 𝑆 ) ) )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) )  ≤  ( 𝐴  ·  ( 𝐿 ‘ 𝑦 ) ) ) | 
						
							| 14 |  | nmoleub2lem.7 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑉 )  →  ( 𝜓  →  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) ) | 
						
							| 15 | 14 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  𝑥  ∈  𝑉 )  →  ( 𝜓  →  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) ) | 
						
							| 16 | 8 | elin1d | ⊢ ( 𝜑  →  𝑇  ∈  NrmMod ) | 
						
							| 17 |  | nlmngp | ⊢ ( 𝑇  ∈  NrmMod  →  𝑇  ∈  NrmGrp ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝜑  →  𝑇  ∈  NrmGrp ) | 
						
							| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  𝑇  ∈  NrmGrp ) | 
						
							| 20 |  | eqid | ⊢ ( Base ‘ 𝑇 )  =  ( Base ‘ 𝑇 ) | 
						
							| 21 | 2 20 | lmhmf | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 22 | 9 21 | syl | ⊢ ( 𝜑  →  𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 23 | 22 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) | 
						
							| 24 |  | simprl | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  𝑥  ∈  𝑉 ) | 
						
							| 25 | 23 24 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  ( 𝐹 ‘ 𝑥 )  ∈  ( Base ‘ 𝑇 ) ) | 
						
							| 26 | 20 4 | nmcl | ⊢ ( ( 𝑇  ∈  NrmGrp  ∧  ( 𝐹 ‘ 𝑥 )  ∈  ( Base ‘ 𝑇 ) )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 27 | 19 25 26 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 28 | 11 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  𝑅  ∈  ℝ+ ) | 
						
							| 29 | 27 28 | rerpdivcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ∈  ℝ ) | 
						
							| 30 | 29 | rexrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ∈  ℝ* ) | 
						
							| 31 | 7 | elin1d | ⊢ ( 𝜑  →  𝑆  ∈  NrmMod ) | 
						
							| 32 |  | nlmngp | ⊢ ( 𝑆  ∈  NrmMod  →  𝑆  ∈  NrmGrp ) | 
						
							| 33 | 31 32 | syl | ⊢ ( 𝜑  →  𝑆  ∈  NrmGrp ) | 
						
							| 34 |  | lmghm | ⊢ ( 𝐹  ∈  ( 𝑆  LMHom  𝑇 )  →  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 35 | 9 34 | syl | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 36 | 1 | nmocl | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  ( 𝑁 ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 37 | 33 18 35 36 | syl3anc | ⊢ ( 𝜑  →  ( 𝑁 ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 38 | 37 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  ( 𝑁 ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 39 | 10 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  𝐴  ∈  ℝ* ) | 
						
							| 40 | 28 | rpred | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  𝑅  ∈  ℝ ) | 
						
							| 41 |  | rexmul | ⊢ ( ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ∈  ℝ  ∧  𝑅  ∈  ℝ )  →  ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ·e  𝑅 )  =  ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ·  𝑅 ) ) | 
						
							| 42 | 29 40 41 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ·e  𝑅 )  =  ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ·  𝑅 ) ) | 
						
							| 43 | 27 | recnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 44 | 40 | recnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  𝑅  ∈  ℂ ) | 
						
							| 45 | 28 | rpne0d | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  𝑅  ≠  0 ) | 
						
							| 46 | 43 44 45 | divcan1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ·  𝑅 )  =  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 47 | 42 46 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ·e  𝑅 )  =  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 48 | 27 | rexrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ∈  ℝ* ) | 
						
							| 49 | 33 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  𝑆  ∈  NrmGrp ) | 
						
							| 50 | 2 3 | nmcl | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑥  ∈  𝑉 )  →  ( 𝐿 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 51 | 49 24 50 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  ( 𝐿 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 52 | 51 | rexrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  ( 𝐿 ‘ 𝑥 )  ∈  ℝ* ) | 
						
							| 53 | 38 52 | xmulcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  ( ( 𝑁 ‘ 𝐹 )  ·e  ( 𝐿 ‘ 𝑥 ) )  ∈  ℝ* ) | 
						
							| 54 | 28 | rpxrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  𝑅  ∈  ℝ* ) | 
						
							| 55 | 38 54 | xmulcld | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  ( ( 𝑁 ‘ 𝐹 )  ·e  𝑅 )  ∈  ℝ* ) | 
						
							| 56 | 35 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 57 | 1 2 3 4 | nmoix | ⊢ ( ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  ∧  𝑥  ∈  𝑉 )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( ( 𝑁 ‘ 𝐹 )  ·e  ( 𝐿 ‘ 𝑥 ) ) ) | 
						
							| 58 | 49 19 56 24 57 | syl31anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( ( 𝑁 ‘ 𝐹 )  ·e  ( 𝐿 ‘ 𝑥 ) ) ) | 
						
							| 59 | 1 | nmoge0 | ⊢ ( ( 𝑆  ∈  NrmGrp  ∧  𝑇  ∈  NrmGrp  ∧  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) )  →  0  ≤  ( 𝑁 ‘ 𝐹 ) ) | 
						
							| 60 | 33 18 35 59 | syl3anc | ⊢ ( 𝜑  →  0  ≤  ( 𝑁 ‘ 𝐹 ) ) | 
						
							| 61 | 37 60 | jca | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ 𝐹 )  ∈  ℝ*  ∧  0  ≤  ( 𝑁 ‘ 𝐹 ) ) ) | 
						
							| 62 | 61 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  ( ( 𝑁 ‘ 𝐹 )  ∈  ℝ*  ∧  0  ≤  ( 𝑁 ‘ 𝐹 ) ) ) | 
						
							| 63 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) | 
						
							| 64 |  | xlemul2a | ⊢ ( ( ( ( 𝐿 ‘ 𝑥 )  ∈  ℝ*  ∧  𝑅  ∈  ℝ*  ∧  ( ( 𝑁 ‘ 𝐹 )  ∈  ℝ*  ∧  0  ≤  ( 𝑁 ‘ 𝐹 ) ) )  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 )  →  ( ( 𝑁 ‘ 𝐹 )  ·e  ( 𝐿 ‘ 𝑥 ) )  ≤  ( ( 𝑁 ‘ 𝐹 )  ·e  𝑅 ) ) | 
						
							| 65 | 52 54 62 63 64 | syl31anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  ( ( 𝑁 ‘ 𝐹 )  ·e  ( 𝐿 ‘ 𝑥 ) )  ≤  ( ( 𝑁 ‘ 𝐹 )  ·e  𝑅 ) ) | 
						
							| 66 | 48 53 55 58 65 | xrletrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  ≤  ( ( 𝑁 ‘ 𝐹 )  ·e  𝑅 ) ) | 
						
							| 67 | 47 66 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ·e  𝑅 )  ≤  ( ( 𝑁 ‘ 𝐹 )  ·e  𝑅 ) ) | 
						
							| 68 |  | xlemul1 | ⊢ ( ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ∈  ℝ*  ∧  ( 𝑁 ‘ 𝐹 )  ∈  ℝ*  ∧  𝑅  ∈  ℝ+ )  →  ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  ( 𝑁 ‘ 𝐹 )  ↔  ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ·e  𝑅 )  ≤  ( ( 𝑁 ‘ 𝐹 )  ·e  𝑅 ) ) ) | 
						
							| 69 | 30 38 28 68 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  ( 𝑁 ‘ 𝐹 )  ↔  ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ·e  𝑅 )  ≤  ( ( 𝑁 ‘ 𝐹 )  ·e  𝑅 ) ) ) | 
						
							| 70 | 67 69 | mpbird | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  ( 𝑁 ‘ 𝐹 ) ) | 
						
							| 71 |  | simplr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 ) | 
						
							| 72 | 30 38 39 70 71 | xrletrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  ( 𝑥  ∈  𝑉  ∧  ( 𝐿 ‘ 𝑥 )  ≤  𝑅 ) )  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) | 
						
							| 73 | 72 | expr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  𝑥  ∈  𝑉 )  →  ( ( 𝐿 ‘ 𝑥 )  ≤  𝑅  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) ) | 
						
							| 74 | 15 73 | syld | ⊢ ( ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  ∧  𝑥  ∈  𝑉 )  →  ( 𝜓  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) ) | 
						
							| 75 | 74 | ralrimiva | ⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 )  →  ∀ 𝑥  ∈  𝑉 ( 𝜓  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) ) | 
						
							| 76 |  | eqid | ⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 ) | 
						
							| 77 | 33 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( 𝜓  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  →  𝑆  ∈  NrmGrp ) | 
						
							| 78 | 18 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( 𝜓  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  →  𝑇  ∈  NrmGrp ) | 
						
							| 79 | 35 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( 𝜓  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  →  𝐹  ∈  ( 𝑆  GrpHom  𝑇 ) ) | 
						
							| 80 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( 𝜓  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  →  𝐴  ∈  ℝ ) | 
						
							| 81 | 12 | adantr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( 𝜓  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  →  0  ≤  𝐴 ) | 
						
							| 82 | 1 2 3 4 76 77 78 79 80 81 13 | nmolb2d | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( 𝜓  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  ∈  ℝ )  →  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 ) | 
						
							| 83 | 37 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( 𝜓  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  =  +∞ )  →  ( 𝑁 ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 84 |  | pnfge | ⊢ ( ( 𝑁 ‘ 𝐹 )  ∈  ℝ*  →  ( 𝑁 ‘ 𝐹 )  ≤  +∞ ) | 
						
							| 85 | 83 84 | syl | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( 𝜓  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  =  +∞ )  →  ( 𝑁 ‘ 𝐹 )  ≤  +∞ ) | 
						
							| 86 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( 𝜓  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  =  +∞ )  →  𝐴  =  +∞ ) | 
						
							| 87 | 85 86 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( 𝜓  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  ∧  𝐴  =  +∞ )  →  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 ) | 
						
							| 88 | 10 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( 𝜓  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  →  𝐴  ∈  ℝ* ) | 
						
							| 89 |  | ge0nemnf | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  0  ≤  𝐴 )  →  𝐴  ≠  -∞ ) | 
						
							| 90 | 88 12 89 | syl2anc | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( 𝜓  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  →  𝐴  ≠  -∞ ) | 
						
							| 91 | 88 90 | jca | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( 𝜓  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  →  ( 𝐴  ∈  ℝ*  ∧  𝐴  ≠  -∞ ) ) | 
						
							| 92 |  | xrnemnf | ⊢ ( ( 𝐴  ∈  ℝ*  ∧  𝐴  ≠  -∞ )  ↔  ( 𝐴  ∈  ℝ  ∨  𝐴  =  +∞ ) ) | 
						
							| 93 | 91 92 | sylib | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( 𝜓  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  →  ( 𝐴  ∈  ℝ  ∨  𝐴  =  +∞ ) ) | 
						
							| 94 | 82 87 93 | mpjaodan | ⊢ ( ( 𝜑  ∧  ∀ 𝑥  ∈  𝑉 ( 𝜓  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) )  →  ( 𝑁 ‘ 𝐹 )  ≤  𝐴 ) | 
						
							| 95 | 75 94 | impbida | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ 𝐹 )  ≤  𝐴  ↔  ∀ 𝑥  ∈  𝑉 ( 𝜓  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) )  /  𝑅 )  ≤  𝐴 ) ) ) |