| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmoleub2.n |
⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) |
| 2 |
|
nmoleub2.v |
⊢ 𝑉 = ( Base ‘ 𝑆 ) |
| 3 |
|
nmoleub2.l |
⊢ 𝐿 = ( norm ‘ 𝑆 ) |
| 4 |
|
nmoleub2.m |
⊢ 𝑀 = ( norm ‘ 𝑇 ) |
| 5 |
|
nmoleub2.g |
⊢ 𝐺 = ( Scalar ‘ 𝑆 ) |
| 6 |
|
nmoleub2.w |
⊢ 𝐾 = ( Base ‘ 𝐺 ) |
| 7 |
|
nmoleub2.s |
⊢ ( 𝜑 → 𝑆 ∈ ( NrmMod ∩ ℂMod ) ) |
| 8 |
|
nmoleub2.t |
⊢ ( 𝜑 → 𝑇 ∈ ( NrmMod ∩ ℂMod ) ) |
| 9 |
|
nmoleub2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
| 10 |
|
nmoleub2.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 11 |
|
nmoleub2.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) |
| 12 |
|
nmoleub2lem.5 |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → 0 ≤ 𝐴 ) |
| 13 |
|
nmoleub2lem.6 |
⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑦 ∈ 𝑉 ∧ 𝑦 ≠ ( 0g ‘ 𝑆 ) ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑦 ) ) ) |
| 14 |
|
nmoleub2lem.7 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → ( 𝜓 → ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) |
| 15 |
14
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝜓 → ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) |
| 16 |
8
|
elin1d |
⊢ ( 𝜑 → 𝑇 ∈ NrmMod ) |
| 17 |
|
nlmngp |
⊢ ( 𝑇 ∈ NrmMod → 𝑇 ∈ NrmGrp ) |
| 18 |
16 17
|
syl |
⊢ ( 𝜑 → 𝑇 ∈ NrmGrp ) |
| 19 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → 𝑇 ∈ NrmGrp ) |
| 20 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
| 21 |
2 20
|
lmhmf |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
| 22 |
9 21
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
| 23 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
| 24 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → 𝑥 ∈ 𝑉 ) |
| 25 |
23 24
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) |
| 26 |
20 4
|
nmcl |
⊢ ( ( 𝑇 ∈ NrmGrp ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 27 |
19 25 26
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 28 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → 𝑅 ∈ ℝ+ ) |
| 29 |
27 28
|
rerpdivcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ∈ ℝ ) |
| 30 |
29
|
rexrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ∈ ℝ* ) |
| 31 |
7
|
elin1d |
⊢ ( 𝜑 → 𝑆 ∈ NrmMod ) |
| 32 |
|
nlmngp |
⊢ ( 𝑆 ∈ NrmMod → 𝑆 ∈ NrmGrp ) |
| 33 |
31 32
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ NrmGrp ) |
| 34 |
|
lmghm |
⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 35 |
9 34
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 36 |
1
|
nmocl |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ) |
| 37 |
33 18 35 36
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ) |
| 38 |
37
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ) |
| 39 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → 𝐴 ∈ ℝ* ) |
| 40 |
28
|
rpred |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → 𝑅 ∈ ℝ ) |
| 41 |
|
rexmul |
⊢ ( ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ∈ ℝ ∧ 𝑅 ∈ ℝ ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ·e 𝑅 ) = ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) · 𝑅 ) ) |
| 42 |
29 40 41
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ·e 𝑅 ) = ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) · 𝑅 ) ) |
| 43 |
27
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℂ ) |
| 44 |
40
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → 𝑅 ∈ ℂ ) |
| 45 |
28
|
rpne0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → 𝑅 ≠ 0 ) |
| 46 |
43 44 45
|
divcan1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) · 𝑅 ) = ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 47 |
42 46
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ·e 𝑅 ) = ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 48 |
27
|
rexrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ* ) |
| 49 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → 𝑆 ∈ NrmGrp ) |
| 50 |
2 3
|
nmcl |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉 ) → ( 𝐿 ‘ 𝑥 ) ∈ ℝ ) |
| 51 |
49 24 50
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( 𝐿 ‘ 𝑥 ) ∈ ℝ ) |
| 52 |
51
|
rexrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( 𝐿 ‘ 𝑥 ) ∈ ℝ* ) |
| 53 |
38 52
|
xmulcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( ( 𝑁 ‘ 𝐹 ) ·e ( 𝐿 ‘ 𝑥 ) ) ∈ ℝ* ) |
| 54 |
28
|
rpxrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → 𝑅 ∈ ℝ* ) |
| 55 |
38 54
|
xmulcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( ( 𝑁 ‘ 𝐹 ) ·e 𝑅 ) ∈ ℝ* ) |
| 56 |
35
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 57 |
1 2 3 4
|
nmoix |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) ·e ( 𝐿 ‘ 𝑥 ) ) ) |
| 58 |
49 19 56 24 57
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) ·e ( 𝐿 ‘ 𝑥 ) ) ) |
| 59 |
1
|
nmoge0 |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → 0 ≤ ( 𝑁 ‘ 𝐹 ) ) |
| 60 |
33 18 35 59
|
syl3anc |
⊢ ( 𝜑 → 0 ≤ ( 𝑁 ‘ 𝐹 ) ) |
| 61 |
37 60
|
jca |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ∧ 0 ≤ ( 𝑁 ‘ 𝐹 ) ) ) |
| 62 |
61
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ∧ 0 ≤ ( 𝑁 ‘ 𝐹 ) ) ) |
| 63 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) |
| 64 |
|
xlemul2a |
⊢ ( ( ( ( 𝐿 ‘ 𝑥 ) ∈ ℝ* ∧ 𝑅 ∈ ℝ* ∧ ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ∧ 0 ≤ ( 𝑁 ‘ 𝐹 ) ) ) ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) → ( ( 𝑁 ‘ 𝐹 ) ·e ( 𝐿 ‘ 𝑥 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) ·e 𝑅 ) ) |
| 65 |
52 54 62 63 64
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( ( 𝑁 ‘ 𝐹 ) ·e ( 𝐿 ‘ 𝑥 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) ·e 𝑅 ) ) |
| 66 |
48 53 55 58 65
|
xrletrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) ·e 𝑅 ) ) |
| 67 |
47 66
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ·e 𝑅 ) ≤ ( ( 𝑁 ‘ 𝐹 ) ·e 𝑅 ) ) |
| 68 |
|
xlemul1 |
⊢ ( ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ∈ ℝ* ∧ ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ∧ 𝑅 ∈ ℝ+ ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ ( 𝑁 ‘ 𝐹 ) ↔ ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ·e 𝑅 ) ≤ ( ( 𝑁 ‘ 𝐹 ) ·e 𝑅 ) ) ) |
| 69 |
30 38 28 68
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ ( 𝑁 ‘ 𝐹 ) ↔ ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ·e 𝑅 ) ≤ ( ( 𝑁 ‘ 𝐹 ) ·e 𝑅 ) ) ) |
| 70 |
67 69
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ ( 𝑁 ‘ 𝐹 ) ) |
| 71 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) |
| 72 |
30 38 39 70 71
|
xrletrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) |
| 73 |
72
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝐿 ‘ 𝑥 ) ≤ 𝑅 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) |
| 74 |
15 73
|
syld |
⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) |
| 75 |
74
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) → ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) |
| 76 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 77 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) → 𝑆 ∈ NrmGrp ) |
| 78 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) → 𝑇 ∈ NrmGrp ) |
| 79 |
35
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 80 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
| 81 |
12
|
adantr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) → 0 ≤ 𝐴 ) |
| 82 |
1 2 3 4 76 77 78 79 80 81 13
|
nmolb2d |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) |
| 83 |
37
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 = +∞ ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ) |
| 84 |
|
pnfge |
⊢ ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ* → ( 𝑁 ‘ 𝐹 ) ≤ +∞ ) |
| 85 |
83 84
|
syl |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 = +∞ ) → ( 𝑁 ‘ 𝐹 ) ≤ +∞ ) |
| 86 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 = +∞ ) → 𝐴 = +∞ ) |
| 87 |
85 86
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ∧ 𝐴 = +∞ ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) |
| 88 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → 𝐴 ∈ ℝ* ) |
| 89 |
|
ge0nemnf |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) → 𝐴 ≠ -∞ ) |
| 90 |
88 12 89
|
syl2anc |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → 𝐴 ≠ -∞ ) |
| 91 |
88 90
|
jca |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) ) |
| 92 |
|
xrnemnf |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ) |
| 93 |
91 92
|
sylib |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ) |
| 94 |
82 87 93
|
mpjaodan |
⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) |
| 95 |
75 94
|
impbida |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ 𝑉 ( 𝜓 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / 𝑅 ) ≤ 𝐴 ) ) ) |