| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmofval.1 |
⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) |
| 2 |
|
nmoi.2 |
⊢ 𝑉 = ( Base ‘ 𝑆 ) |
| 3 |
|
nmoi.3 |
⊢ 𝐿 = ( norm ‘ 𝑆 ) |
| 4 |
|
nmoi.4 |
⊢ 𝑀 = ( norm ‘ 𝑇 ) |
| 5 |
1
|
isnghm2 |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ↔ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) |
| 6 |
5
|
biimpar |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) → 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ) |
| 7 |
1 2 3 4
|
nmoi |
⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) · ( 𝐿 ‘ 𝑋 ) ) ) |
| 8 |
6 7
|
sylan |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) · ( 𝐿 ‘ 𝑋 ) ) ) |
| 9 |
8
|
an32s |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) · ( 𝐿 ‘ 𝑋 ) ) ) |
| 10 |
|
id |
⊢ ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ → ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) |
| 11 |
2 3
|
nmcl |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑋 ∈ 𝑉 ) → ( 𝐿 ‘ 𝑋 ) ∈ ℝ ) |
| 12 |
11
|
3ad2antl1 |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐿 ‘ 𝑋 ) ∈ ℝ ) |
| 13 |
|
rexmul |
⊢ ( ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ ∧ ( 𝐿 ‘ 𝑋 ) ∈ ℝ ) → ( ( 𝑁 ‘ 𝐹 ) ·e ( 𝐿 ‘ 𝑋 ) ) = ( ( 𝑁 ‘ 𝐹 ) · ( 𝐿 ‘ 𝑋 ) ) ) |
| 14 |
10 12 13
|
syl2anr |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) → ( ( 𝑁 ‘ 𝐹 ) ·e ( 𝐿 ‘ 𝑋 ) ) = ( ( 𝑁 ‘ 𝐹 ) · ( 𝐿 ‘ 𝑋 ) ) ) |
| 15 |
9 14
|
breqtrrd |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) ·e ( 𝐿 ‘ 𝑋 ) ) ) |
| 16 |
|
fveq2 |
⊢ ( 𝑋 = ( 0g ‘ 𝑆 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) |
| 17 |
16
|
fveq2d |
⊢ ( 𝑋 = ( 0g ‘ 𝑆 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) = ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) ) |
| 18 |
|
fveq2 |
⊢ ( 𝑋 = ( 0g ‘ 𝑆 ) → ( 𝐿 ‘ 𝑋 ) = ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) ) |
| 19 |
18
|
oveq2d |
⊢ ( 𝑋 = ( 0g ‘ 𝑆 ) → ( +∞ ·e ( 𝐿 ‘ 𝑋 ) ) = ( +∞ ·e ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) ) ) |
| 20 |
17 19
|
breq12d |
⊢ ( 𝑋 = ( 0g ‘ 𝑆 ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( +∞ ·e ( 𝐿 ‘ 𝑋 ) ) ↔ ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) ≤ ( +∞ ·e ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) ) ) ) |
| 21 |
|
simpl2 |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) → 𝑇 ∈ NrmGrp ) |
| 22 |
|
eqid |
⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) |
| 23 |
2 22
|
ghmf |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
| 24 |
23
|
ffvelcdmda |
⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝑇 ) ) |
| 25 |
24
|
3ad2antl3 |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝑇 ) ) |
| 26 |
22 4
|
nmcl |
⊢ ( ( 𝑇 ∈ NrmGrp ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝑇 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ ) |
| 27 |
21 25 26
|
syl2anc |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ ) |
| 28 |
27
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ ) |
| 29 |
28
|
rexrd |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ* ) |
| 30 |
|
pnfge |
⊢ ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ* → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ +∞ ) |
| 31 |
29 30
|
syl |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ +∞ ) |
| 32 |
|
simp1 |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → 𝑆 ∈ NrmGrp ) |
| 33 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 34 |
2 3 33
|
nmrpcl |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( 𝐿 ‘ 𝑋 ) ∈ ℝ+ ) |
| 35 |
34
|
3expa |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( 𝐿 ‘ 𝑋 ) ∈ ℝ+ ) |
| 36 |
32 35
|
sylanl1 |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( 𝐿 ‘ 𝑋 ) ∈ ℝ+ ) |
| 37 |
|
rpxr |
⊢ ( ( 𝐿 ‘ 𝑋 ) ∈ ℝ+ → ( 𝐿 ‘ 𝑋 ) ∈ ℝ* ) |
| 38 |
|
rpgt0 |
⊢ ( ( 𝐿 ‘ 𝑋 ) ∈ ℝ+ → 0 < ( 𝐿 ‘ 𝑋 ) ) |
| 39 |
|
xmulpnf2 |
⊢ ( ( ( 𝐿 ‘ 𝑋 ) ∈ ℝ* ∧ 0 < ( 𝐿 ‘ 𝑋 ) ) → ( +∞ ·e ( 𝐿 ‘ 𝑋 ) ) = +∞ ) |
| 40 |
37 38 39
|
syl2anc |
⊢ ( ( 𝐿 ‘ 𝑋 ) ∈ ℝ+ → ( +∞ ·e ( 𝐿 ‘ 𝑋 ) ) = +∞ ) |
| 41 |
36 40
|
syl |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( +∞ ·e ( 𝐿 ‘ 𝑋 ) ) = +∞ ) |
| 42 |
31 41
|
breqtrrd |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( +∞ ·e ( 𝐿 ‘ 𝑋 ) ) ) |
| 43 |
|
0le0 |
⊢ 0 ≤ 0 |
| 44 |
|
simpl3 |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 45 |
|
eqid |
⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) |
| 46 |
33 45
|
ghmid |
⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
| 47 |
44 46
|
syl |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
| 48 |
47
|
fveq2d |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) = ( 𝑀 ‘ ( 0g ‘ 𝑇 ) ) ) |
| 49 |
4 45
|
nm0 |
⊢ ( 𝑇 ∈ NrmGrp → ( 𝑀 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) |
| 50 |
21 49
|
syl |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) |
| 51 |
48 50
|
eqtrd |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) = 0 ) |
| 52 |
|
simpl1 |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) → 𝑆 ∈ NrmGrp ) |
| 53 |
3 33
|
nm0 |
⊢ ( 𝑆 ∈ NrmGrp → ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) = 0 ) |
| 54 |
52 53
|
syl |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) = 0 ) |
| 55 |
54
|
oveq2d |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( +∞ ·e ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) ) = ( +∞ ·e 0 ) ) |
| 56 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 57 |
|
xmul01 |
⊢ ( +∞ ∈ ℝ* → ( +∞ ·e 0 ) = 0 ) |
| 58 |
56 57
|
ax-mp |
⊢ ( +∞ ·e 0 ) = 0 |
| 59 |
55 58
|
eqtrdi |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( +∞ ·e ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) ) = 0 ) |
| 60 |
51 59
|
breq12d |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) ≤ ( +∞ ·e ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) ) ↔ 0 ≤ 0 ) ) |
| 61 |
43 60
|
mpbiri |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) ≤ ( +∞ ·e ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) ) ) |
| 62 |
20 42 61
|
pm2.61ne |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( +∞ ·e ( 𝐿 ‘ 𝑋 ) ) ) |
| 63 |
62
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑁 ‘ 𝐹 ) = +∞ ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( +∞ ·e ( 𝐿 ‘ 𝑋 ) ) ) |
| 64 |
|
simpr |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑁 ‘ 𝐹 ) = +∞ ) → ( 𝑁 ‘ 𝐹 ) = +∞ ) |
| 65 |
64
|
oveq1d |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑁 ‘ 𝐹 ) = +∞ ) → ( ( 𝑁 ‘ 𝐹 ) ·e ( 𝐿 ‘ 𝑋 ) ) = ( +∞ ·e ( 𝐿 ‘ 𝑋 ) ) ) |
| 66 |
63 65
|
breqtrrd |
⊢ ( ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) ∧ ( 𝑁 ‘ 𝐹 ) = +∞ ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) ·e ( 𝐿 ‘ 𝑋 ) ) ) |
| 67 |
1
|
nmocl |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ) |
| 68 |
1
|
nmoge0 |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → 0 ≤ ( 𝑁 ‘ 𝐹 ) ) |
| 69 |
|
ge0nemnf |
⊢ ( ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ∧ 0 ≤ ( 𝑁 ‘ 𝐹 ) ) → ( 𝑁 ‘ 𝐹 ) ≠ -∞ ) |
| 70 |
67 68 69
|
syl2anc |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝑁 ‘ 𝐹 ) ≠ -∞ ) |
| 71 |
67 70
|
jca |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ∧ ( 𝑁 ‘ 𝐹 ) ≠ -∞ ) ) |
| 72 |
|
xrnemnf |
⊢ ( ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ∧ ( 𝑁 ‘ 𝐹 ) ≠ -∞ ) ↔ ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ ∨ ( 𝑁 ‘ 𝐹 ) = +∞ ) ) |
| 73 |
71 72
|
sylib |
⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ ∨ ( 𝑁 ‘ 𝐹 ) = +∞ ) ) |
| 74 |
73
|
adantr |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ ∨ ( 𝑁 ‘ 𝐹 ) = +∞ ) ) |
| 75 |
15 66 74
|
mpjaodan |
⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) ·e ( 𝐿 ‘ 𝑋 ) ) ) |