Metamath Proof Explorer


Theorem nmoleub2lem

Description: Lemma for nmoleub2a and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015)

Ref Expression
Hypotheses nmoleub2.n N = S normOp T
nmoleub2.v V = Base S
nmoleub2.l L = norm S
nmoleub2.m M = norm T
nmoleub2.g G = Scalar S
nmoleub2.w K = Base G
nmoleub2.s φ S NrmMod CMod
nmoleub2.t φ T NrmMod CMod
nmoleub2.f φ F S LMHom T
nmoleub2.a φ A *
nmoleub2.r φ R +
nmoleub2lem.5 φ x V ψ M F x R A 0 A
nmoleub2lem.6 φ x V ψ M F x R A A y V y 0 S M F y A L y
nmoleub2lem.7 φ x V ψ L x R
Assertion nmoleub2lem φ N F A x V ψ M F x R A

Proof

Step Hyp Ref Expression
1 nmoleub2.n N = S normOp T
2 nmoleub2.v V = Base S
3 nmoleub2.l L = norm S
4 nmoleub2.m M = norm T
5 nmoleub2.g G = Scalar S
6 nmoleub2.w K = Base G
7 nmoleub2.s φ S NrmMod CMod
8 nmoleub2.t φ T NrmMod CMod
9 nmoleub2.f φ F S LMHom T
10 nmoleub2.a φ A *
11 nmoleub2.r φ R +
12 nmoleub2lem.5 φ x V ψ M F x R A 0 A
13 nmoleub2lem.6 φ x V ψ M F x R A A y V y 0 S M F y A L y
14 nmoleub2lem.7 φ x V ψ L x R
15 14 adantlr φ N F A x V ψ L x R
16 8 elin1d φ T NrmMod
17 nlmngp T NrmMod T NrmGrp
18 16 17 syl φ T NrmGrp
19 18 ad2antrr φ N F A x V L x R T NrmGrp
20 eqid Base T = Base T
21 2 20 lmhmf F S LMHom T F : V Base T
22 9 21 syl φ F : V Base T
23 22 ad2antrr φ N F A x V L x R F : V Base T
24 simprl φ N F A x V L x R x V
25 23 24 ffvelrnd φ N F A x V L x R F x Base T
26 20 4 nmcl T NrmGrp F x Base T M F x
27 19 25 26 syl2anc φ N F A x V L x R M F x
28 11 ad2antrr φ N F A x V L x R R +
29 27 28 rerpdivcld φ N F A x V L x R M F x R
30 29 rexrd φ N F A x V L x R M F x R *
31 7 elin1d φ S NrmMod
32 nlmngp S NrmMod S NrmGrp
33 31 32 syl φ S NrmGrp
34 lmghm F S LMHom T F S GrpHom T
35 9 34 syl φ F S GrpHom T
36 1 nmocl S NrmGrp T NrmGrp F S GrpHom T N F *
37 33 18 35 36 syl3anc φ N F *
38 37 ad2antrr φ N F A x V L x R N F *
39 10 ad2antrr φ N F A x V L x R A *
40 28 rpred φ N F A x V L x R R
41 rexmul M F x R R M F x R 𝑒 R = M F x R R
42 29 40 41 syl2anc φ N F A x V L x R M F x R 𝑒 R = M F x R R
43 27 recnd φ N F A x V L x R M F x
44 40 recnd φ N F A x V L x R R
45 28 rpne0d φ N F A x V L x R R 0
46 43 44 45 divcan1d φ N F A x V L x R M F x R R = M F x
47 42 46 eqtrd φ N F A x V L x R M F x R 𝑒 R = M F x
48 27 rexrd φ N F A x V L x R M F x *
49 33 ad2antrr φ N F A x V L x R S NrmGrp
50 2 3 nmcl S NrmGrp x V L x
51 49 24 50 syl2anc φ N F A x V L x R L x
52 51 rexrd φ N F A x V L x R L x *
53 38 52 xmulcld φ N F A x V L x R N F 𝑒 L x *
54 28 rpxrd φ N F A x V L x R R *
55 38 54 xmulcld φ N F A x V L x R N F 𝑒 R *
56 35 ad2antrr φ N F A x V L x R F S GrpHom T
57 1 2 3 4 nmoix S NrmGrp T NrmGrp F S GrpHom T x V M F x N F 𝑒 L x
58 49 19 56 24 57 syl31anc φ N F A x V L x R M F x N F 𝑒 L x
59 1 nmoge0 S NrmGrp T NrmGrp F S GrpHom T 0 N F
60 33 18 35 59 syl3anc φ 0 N F
61 37 60 jca φ N F * 0 N F
62 61 ad2antrr φ N F A x V L x R N F * 0 N F
63 simprr φ N F A x V L x R L x R
64 xlemul2a L x * R * N F * 0 N F L x R N F 𝑒 L x N F 𝑒 R
65 52 54 62 63 64 syl31anc φ N F A x V L x R N F 𝑒 L x N F 𝑒 R
66 48 53 55 58 65 xrletrd φ N F A x V L x R M F x N F 𝑒 R
67 47 66 eqbrtrd φ N F A x V L x R M F x R 𝑒 R N F 𝑒 R
68 xlemul1 M F x R * N F * R + M F x R N F M F x R 𝑒 R N F 𝑒 R
69 30 38 28 68 syl3anc φ N F A x V L x R M F x R N F M F x R 𝑒 R N F 𝑒 R
70 67 69 mpbird φ N F A x V L x R M F x R N F
71 simplr φ N F A x V L x R N F A
72 30 38 39 70 71 xrletrd φ N F A x V L x R M F x R A
73 72 expr φ N F A x V L x R M F x R A
74 15 73 syld φ N F A x V ψ M F x R A
75 74 ralrimiva φ N F A x V ψ M F x R A
76 eqid 0 S = 0 S
77 33 ad2antrr φ x V ψ M F x R A A S NrmGrp
78 18 ad2antrr φ x V ψ M F x R A A T NrmGrp
79 35 ad2antrr φ x V ψ M F x R A A F S GrpHom T
80 simpr φ x V ψ M F x R A A A
81 12 adantr φ x V ψ M F x R A A 0 A
82 1 2 3 4 76 77 78 79 80 81 13 nmolb2d φ x V ψ M F x R A A N F A
83 37 ad2antrr φ x V ψ M F x R A A = +∞ N F *
84 pnfge N F * N F +∞
85 83 84 syl φ x V ψ M F x R A A = +∞ N F +∞
86 simpr φ x V ψ M F x R A A = +∞ A = +∞
87 85 86 breqtrrd φ x V ψ M F x R A A = +∞ N F A
88 10 adantr φ x V ψ M F x R A A *
89 ge0nemnf A * 0 A A −∞
90 88 12 89 syl2anc φ x V ψ M F x R A A −∞
91 88 90 jca φ x V ψ M F x R A A * A −∞
92 xrnemnf A * A −∞ A A = +∞
93 91 92 sylib φ x V ψ M F x R A A A = +∞
94 82 87 93 mpjaodan φ x V ψ M F x R A N F A
95 75 94 impbida φ N F A x V ψ M F x R A