Metamath Proof Explorer


Theorem xlemul2a

Description: Extended real version of lemul2a . (Contributed by Mario Carneiro, 8-Sep-2015)

Ref Expression
Assertion xlemul2a A*B*C*0CABC𝑒AC𝑒B

Proof

Step Hyp Ref Expression
1 xlemul1a A*B*C*0CABA𝑒CB𝑒C
2 simpl1 A*B*C*0CABA*
3 simpl3l A*B*C*0CABC*
4 xmulcom A*C*A𝑒C=C𝑒A
5 2 3 4 syl2anc A*B*C*0CABA𝑒C=C𝑒A
6 simpl2 A*B*C*0CABB*
7 xmulcom B*C*B𝑒C=C𝑒B
8 6 3 7 syl2anc A*B*C*0CABB𝑒C=C𝑒B
9 1 5 8 3brtr3d A*B*C*0CABC𝑒AC𝑒B