Metamath Proof Explorer


Theorem xlemul1

Description: Extended real version of lemul1 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xlemul1 A * B * C + A B A 𝑒 C B 𝑒 C

Proof

Step Hyp Ref Expression
1 rpxr C + C *
2 rpge0 C + 0 C
3 1 2 jca C + C * 0 C
4 xlemul1a A * B * C * 0 C A B A 𝑒 C B 𝑒 C
5 4 ex A * B * C * 0 C A B A 𝑒 C B 𝑒 C
6 3 5 syl3an3 A * B * C + A B A 𝑒 C B 𝑒 C
7 simp1 A * B * C + A *
8 1 3ad2ant3 A * B * C + C *
9 xmulcl A * C * A 𝑒 C *
10 7 8 9 syl2anc A * B * C + A 𝑒 C *
11 simp2 A * B * C + B *
12 xmulcl B * C * B 𝑒 C *
13 11 8 12 syl2anc A * B * C + B 𝑒 C *
14 rpreccl C + 1 C +
15 14 3ad2ant3 A * B * C + 1 C +
16 rpxr 1 C + 1 C *
17 15 16 syl A * B * C + 1 C *
18 rpge0 1 C + 0 1 C
19 15 18 syl A * B * C + 0 1 C
20 xlemul1a A 𝑒 C * B 𝑒 C * 1 C * 0 1 C A 𝑒 C B 𝑒 C A 𝑒 C 𝑒 1 C B 𝑒 C 𝑒 1 C
21 20 ex A 𝑒 C * B 𝑒 C * 1 C * 0 1 C A 𝑒 C B 𝑒 C A 𝑒 C 𝑒 1 C B 𝑒 C 𝑒 1 C
22 10 13 17 19 21 syl112anc A * B * C + A 𝑒 C B 𝑒 C A 𝑒 C 𝑒 1 C B 𝑒 C 𝑒 1 C
23 xmulass A * C * 1 C * A 𝑒 C 𝑒 1 C = A 𝑒 C 𝑒 1 C
24 7 8 17 23 syl3anc A * B * C + A 𝑒 C 𝑒 1 C = A 𝑒 C 𝑒 1 C
25 rpre C + C
26 25 3ad2ant3 A * B * C + C
27 15 rpred A * B * C + 1 C
28 rexmul C 1 C C 𝑒 1 C = C 1 C
29 26 27 28 syl2anc A * B * C + C 𝑒 1 C = C 1 C
30 26 recnd A * B * C + C
31 rpne0 C + C 0
32 31 3ad2ant3 A * B * C + C 0
33 30 32 recidd A * B * C + C 1 C = 1
34 29 33 eqtrd A * B * C + C 𝑒 1 C = 1
35 34 oveq2d A * B * C + A 𝑒 C 𝑒 1 C = A 𝑒 1
36 xmulid1 A * A 𝑒 1 = A
37 7 36 syl A * B * C + A 𝑒 1 = A
38 24 35 37 3eqtrd A * B * C + A 𝑒 C 𝑒 1 C = A
39 xmulass B * C * 1 C * B 𝑒 C 𝑒 1 C = B 𝑒 C 𝑒 1 C
40 11 8 17 39 syl3anc A * B * C + B 𝑒 C 𝑒 1 C = B 𝑒 C 𝑒 1 C
41 34 oveq2d A * B * C + B 𝑒 C 𝑒 1 C = B 𝑒 1
42 xmulid1 B * B 𝑒 1 = B
43 11 42 syl A * B * C + B 𝑒 1 = B
44 40 41 43 3eqtrd A * B * C + B 𝑒 C 𝑒 1 C = B
45 38 44 breq12d A * B * C + A 𝑒 C 𝑒 1 C B 𝑒 C 𝑒 1 C A B
46 22 45 sylibd A * B * C + A 𝑒 C B 𝑒 C A B
47 6 46 impbid A * B * C + A B A 𝑒 C B 𝑒 C