Metamath Proof Explorer


Theorem nmoleub2lem3

Description: Lemma for nmoleub2a and similar theorems. (Contributed by Mario Carneiro, 19-Oct-2015) (Proof shortened by AV, 29-Sep-2021)

Ref Expression
Hypotheses nmoleub2.n N=SnormOpT
nmoleub2.v V=BaseS
nmoleub2.l L=normS
nmoleub2.m M=normT
nmoleub2.g G=ScalarS
nmoleub2.w K=BaseG
nmoleub2.s φSNrmModCMod
nmoleub2.t φTNrmModCMod
nmoleub2.f φFSLMHomT
nmoleub2.a φA*
nmoleub2.r φR+
nmoleub2a.5 φK
nmoleub2lem3.p ·˙=S
nmoleub2lem3.1 φA
nmoleub2lem3.2 φ0A
nmoleub2lem3.3 φBV
nmoleub2lem3.4 φB0S
nmoleub2lem3.5 φr·˙BVLr·˙B<RMFr·˙BRA
nmoleub2lem3.6 φ¬MFBALB
Assertion nmoleub2lem3 ¬φ

Proof

Step Hyp Ref Expression
1 nmoleub2.n N=SnormOpT
2 nmoleub2.v V=BaseS
3 nmoleub2.l L=normS
4 nmoleub2.m M=normT
5 nmoleub2.g G=ScalarS
6 nmoleub2.w K=BaseG
7 nmoleub2.s φSNrmModCMod
8 nmoleub2.t φTNrmModCMod
9 nmoleub2.f φFSLMHomT
10 nmoleub2.a φA*
11 nmoleub2.r φR+
12 nmoleub2a.5 φK
13 nmoleub2lem3.p ·˙=S
14 nmoleub2lem3.1 φA
15 nmoleub2lem3.2 φ0A
16 nmoleub2lem3.3 φBV
17 nmoleub2lem3.4 φB0S
18 nmoleub2lem3.5 φr·˙BVLr·˙B<RMFr·˙BRA
19 nmoleub2lem3.6 φ¬MFBALB
20 simprl φrARMFB<rr<RLBARMFB<r
21 qre rr
22 21 ad2antlr φrARMFB<rr<RLBr
23 11 rpred φR
24 14 23 remulcld φAR
25 8 elin1d φTNrmMod
26 nlmngp TNrmModTNrmGrp
27 25 26 syl φTNrmGrp
28 eqid BaseT=BaseT
29 2 28 lmhmf FSLMHomTF:VBaseT
30 9 29 syl φF:VBaseT
31 30 16 ffvelcdmd φFBBaseT
32 28 4 nmcl TNrmGrpFBBaseTMFB
33 27 31 32 syl2anc φMFB
34 0red φ0
35 7 elin1d φSNrmMod
36 nlmngp SNrmModSNrmGrp
37 35 36 syl φSNrmGrp
38 2 3 nmcl SNrmGrpBVLB
39 37 16 38 syl2anc φLB
40 14 39 remulcld φALB
41 2 3 nmge0 SNrmGrpBV0LB
42 37 16 41 syl2anc φ0LB
43 14 39 15 42 mulge0d φ0ALB
44 40 33 ltnled φALB<MFB¬MFBALB
45 19 44 mpbird φALB<MFB
46 34 40 33 43 45 lelttrd φ0<MFB
47 33 46 elrpd φMFB+
48 24 47 rerpdivcld φARMFB
49 48 ad2antrr φrARMFB<rr<RLBARMFB
50 9 ad2antrr φrARMFB<rr<RLBFSLMHomT
51 12 sselda φrrK
52 51 adantr φrARMFB<rr<RLBrK
53 16 ad2antrr φrARMFB<rr<RLBBV
54 eqid T=T
55 5 6 2 13 54 lmhmlin FSLMHomTrKBVFr·˙B=rTFB
56 50 52 53 55 syl3anc φrARMFB<rr<RLBFr·˙B=rTFB
57 56 fveq2d φrARMFB<rr<RLBMFr·˙B=MrTFB
58 25 ad2antrr φrARMFB<rr<RLBTNrmMod
59 eqid ScalarT=ScalarT
60 5 59 lmhmsca FSLMHomTScalarT=G
61 50 60 syl φrARMFB<rr<RLBScalarT=G
62 61 fveq2d φrARMFB<rr<RLBBaseScalarT=BaseG
63 62 6 eqtr4di φrARMFB<rr<RLBBaseScalarT=K
64 52 63 eleqtrrd φrARMFB<rr<RLBrBaseScalarT
65 31 ad2antrr φrARMFB<rr<RLBFBBaseT
66 eqid BaseScalarT=BaseScalarT
67 eqid normScalarT=normScalarT
68 28 4 54 59 66 67 nmvs TNrmModrBaseScalarTFBBaseTMrTFB=normScalarTrMFB
69 58 64 65 68 syl3anc φrARMFB<rr<RLBMrTFB=normScalarTrMFB
70 61 fveq2d φrARMFB<rr<RLBnormScalarT=normG
71 70 fveq1d φrARMFB<rr<RLBnormScalarTr=normGr
72 7 elin2d φSCMod
73 72 ad2antrr φrARMFB<rr<RLBSCMod
74 5 6 clmabs SCModrKr=normGr
75 73 52 74 syl2anc φrARMFB<rr<RLBr=normGr
76 0red φrARMFB<rr<RLB0
77 11 rpge0d φ0R
78 14 23 15 77 mulge0d φ0AR
79 divge0 AR0ARMFB0<MFB0ARMFB
80 24 78 33 46 79 syl22anc φ0ARMFB
81 80 ad2antrr φrARMFB<rr<RLB0ARMFB
82 76 49 22 81 20 lelttrd φrARMFB<rr<RLB0<r
83 76 22 82 ltled φrARMFB<rr<RLB0r
84 22 83 absidd φrARMFB<rr<RLBr=r
85 75 84 eqtr3d φrARMFB<rr<RLBnormGr=r
86 71 85 eqtrd φrARMFB<rr<RLBnormScalarTr=r
87 86 oveq1d φrARMFB<rr<RLBnormScalarTrMFB=rMFB
88 57 69 87 3eqtrd φrARMFB<rr<RLBMFr·˙B=rMFB
89 88 oveq1d φrARMFB<rr<RLBMFr·˙BR=rMFBR
90 2 5 13 6 clmvscl SCModrKBVr·˙BV
91 73 52 53 90 syl3anc φrARMFB<rr<RLBr·˙BV
92 35 ad2antrr φrARMFB<rr<RLBSNrmMod
93 eqid normG=normG
94 2 3 13 5 6 93 nmvs SNrmModrKBVLr·˙B=normGrLB
95 92 52 53 94 syl3anc φrARMFB<rr<RLBLr·˙B=normGrLB
96 85 oveq1d φrARMFB<rr<RLBnormGrLB=rLB
97 95 96 eqtrd φrARMFB<rr<RLBLr·˙B=rLB
98 simprr φrARMFB<rr<RLBr<RLB
99 23 ad2antrr φrARMFB<rr<RLBR
100 eqid 0S=0S
101 2 3 100 nmrpcl SNrmGrpBVB0SLB+
102 37 16 17 101 syl3anc φLB+
103 102 rpregt0d φLB0<LB
104 103 ad2antrr φrARMFB<rr<RLBLB0<LB
105 ltmuldiv rRLB0<LBrLB<Rr<RLB
106 22 99 104 105 syl3anc φrARMFB<rr<RLBrLB<Rr<RLB
107 98 106 mpbird φrARMFB<rr<RLBrLB<R
108 97 107 eqbrtrd φrARMFB<rr<RLBLr·˙B<R
109 18 ad2antrr φrARMFB<rr<RLBr·˙BVLr·˙B<RMFr·˙BRA
110 91 108 109 mp2d φrARMFB<rr<RLBMFr·˙BRA
111 89 110 eqbrtrrd φrARMFB<rr<RLBrMFBRA
112 33 ad2antrr φrARMFB<rr<RLBMFB
113 22 112 remulcld φrARMFB<rr<RLBrMFB
114 14 ad2antrr φrARMFB<rr<RLBA
115 11 ad2antrr φrARMFB<rr<RLBR+
116 113 114 115 ledivmul2d φrARMFB<rr<RLBrMFBRArMFBAR
117 111 116 mpbid φrARMFB<rr<RLBrMFBAR
118 114 99 remulcld φrARMFB<rr<RLBAR
119 33 46 jca φMFB0<MFB
120 119 ad2antrr φrARMFB<rr<RLBMFB0<MFB
121 lemuldiv rARMFB0<MFBrMFBARrARMFB
122 22 118 120 121 syl3anc φrARMFB<rr<RLBrMFBARrARMFB
123 117 122 mpbid φrARMFB<rr<RLBrARMFB
124 22 49 123 lensymd φrARMFB<rr<RLB¬ARMFB<r
125 20 124 pm2.21dd φrARMFB<rr<RLBMFBALB
126 23 102 rerpdivcld φRLB
127 14 recnd φA
128 23 recnd φR
129 39 recnd φLB
130 mulass ARLBARLB=ARLB
131 mul12 ARLBARLB=RALB
132 130 131 eqtrd ARLBARLB=RALB
133 127 128 129 132 syl3anc φARLB=RALB
134 40 33 11 45 ltmul2dd φRALB<RMFB
135 133 134 eqbrtrd φARLB<RMFB
136 lt2mul2div ARLB0<LBRMFB0<MFBARLB<RMFBARMFB<RLB
137 24 103 23 119 136 syl22anc φARLB<RMFBARMFB<RLB
138 135 137 mpbid φARMFB<RLB
139 qbtwnre ARMFBRLBARMFB<RLBrARMFB<rr<RLB
140 48 126 138 139 syl3anc φrARMFB<rr<RLB
141 125 140 r19.29a φMFBALB
142 141 19 pm2.65i ¬φ