| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nmoleub2.n |
|- N = ( S normOp T ) |
| 2 |
|
nmoleub2.v |
|- V = ( Base ` S ) |
| 3 |
|
nmoleub2.l |
|- L = ( norm ` S ) |
| 4 |
|
nmoleub2.m |
|- M = ( norm ` T ) |
| 5 |
|
nmoleub2.g |
|- G = ( Scalar ` S ) |
| 6 |
|
nmoleub2.w |
|- K = ( Base ` G ) |
| 7 |
|
nmoleub2.s |
|- ( ph -> S e. ( NrmMod i^i CMod ) ) |
| 8 |
|
nmoleub2.t |
|- ( ph -> T e. ( NrmMod i^i CMod ) ) |
| 9 |
|
nmoleub2.f |
|- ( ph -> F e. ( S LMHom T ) ) |
| 10 |
|
nmoleub2.a |
|- ( ph -> A e. RR* ) |
| 11 |
|
nmoleub2.r |
|- ( ph -> R e. RR+ ) |
| 12 |
|
nmoleub2a.5 |
|- ( ph -> QQ C_ K ) |
| 13 |
|
nmoleub2lem3.p |
|- .x. = ( .s ` S ) |
| 14 |
|
nmoleub2lem3.1 |
|- ( ph -> A e. RR ) |
| 15 |
|
nmoleub2lem3.2 |
|- ( ph -> 0 <_ A ) |
| 16 |
|
nmoleub2lem3.3 |
|- ( ph -> B e. V ) |
| 17 |
|
nmoleub2lem3.4 |
|- ( ph -> B =/= ( 0g ` S ) ) |
| 18 |
|
nmoleub2lem3.5 |
|- ( ph -> ( ( r .x. B ) e. V -> ( ( L ` ( r .x. B ) ) < R -> ( ( M ` ( F ` ( r .x. B ) ) ) / R ) <_ A ) ) ) |
| 19 |
|
nmoleub2lem3.6 |
|- ( ph -> -. ( M ` ( F ` B ) ) <_ ( A x. ( L ` B ) ) ) |
| 20 |
|
simprl |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r ) |
| 21 |
|
qre |
|- ( r e. QQ -> r e. RR ) |
| 22 |
21
|
ad2antlr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> r e. RR ) |
| 23 |
11
|
rpred |
|- ( ph -> R e. RR ) |
| 24 |
14 23
|
remulcld |
|- ( ph -> ( A x. R ) e. RR ) |
| 25 |
8
|
elin1d |
|- ( ph -> T e. NrmMod ) |
| 26 |
|
nlmngp |
|- ( T e. NrmMod -> T e. NrmGrp ) |
| 27 |
25 26
|
syl |
|- ( ph -> T e. NrmGrp ) |
| 28 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
| 29 |
2 28
|
lmhmf |
|- ( F e. ( S LMHom T ) -> F : V --> ( Base ` T ) ) |
| 30 |
9 29
|
syl |
|- ( ph -> F : V --> ( Base ` T ) ) |
| 31 |
30 16
|
ffvelcdmd |
|- ( ph -> ( F ` B ) e. ( Base ` T ) ) |
| 32 |
28 4
|
nmcl |
|- ( ( T e. NrmGrp /\ ( F ` B ) e. ( Base ` T ) ) -> ( M ` ( F ` B ) ) e. RR ) |
| 33 |
27 31 32
|
syl2anc |
|- ( ph -> ( M ` ( F ` B ) ) e. RR ) |
| 34 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 35 |
7
|
elin1d |
|- ( ph -> S e. NrmMod ) |
| 36 |
|
nlmngp |
|- ( S e. NrmMod -> S e. NrmGrp ) |
| 37 |
35 36
|
syl |
|- ( ph -> S e. NrmGrp ) |
| 38 |
2 3
|
nmcl |
|- ( ( S e. NrmGrp /\ B e. V ) -> ( L ` B ) e. RR ) |
| 39 |
37 16 38
|
syl2anc |
|- ( ph -> ( L ` B ) e. RR ) |
| 40 |
14 39
|
remulcld |
|- ( ph -> ( A x. ( L ` B ) ) e. RR ) |
| 41 |
2 3
|
nmge0 |
|- ( ( S e. NrmGrp /\ B e. V ) -> 0 <_ ( L ` B ) ) |
| 42 |
37 16 41
|
syl2anc |
|- ( ph -> 0 <_ ( L ` B ) ) |
| 43 |
14 39 15 42
|
mulge0d |
|- ( ph -> 0 <_ ( A x. ( L ` B ) ) ) |
| 44 |
40 33
|
ltnled |
|- ( ph -> ( ( A x. ( L ` B ) ) < ( M ` ( F ` B ) ) <-> -. ( M ` ( F ` B ) ) <_ ( A x. ( L ` B ) ) ) ) |
| 45 |
19 44
|
mpbird |
|- ( ph -> ( A x. ( L ` B ) ) < ( M ` ( F ` B ) ) ) |
| 46 |
34 40 33 43 45
|
lelttrd |
|- ( ph -> 0 < ( M ` ( F ` B ) ) ) |
| 47 |
33 46
|
elrpd |
|- ( ph -> ( M ` ( F ` B ) ) e. RR+ ) |
| 48 |
24 47
|
rerpdivcld |
|- ( ph -> ( ( A x. R ) / ( M ` ( F ` B ) ) ) e. RR ) |
| 49 |
48
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( A x. R ) / ( M ` ( F ` B ) ) ) e. RR ) |
| 50 |
9
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> F e. ( S LMHom T ) ) |
| 51 |
12
|
sselda |
|- ( ( ph /\ r e. QQ ) -> r e. K ) |
| 52 |
51
|
adantr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> r e. K ) |
| 53 |
16
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> B e. V ) |
| 54 |
|
eqid |
|- ( .s ` T ) = ( .s ` T ) |
| 55 |
5 6 2 13 54
|
lmhmlin |
|- ( ( F e. ( S LMHom T ) /\ r e. K /\ B e. V ) -> ( F ` ( r .x. B ) ) = ( r ( .s ` T ) ( F ` B ) ) ) |
| 56 |
50 52 53 55
|
syl3anc |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( F ` ( r .x. B ) ) = ( r ( .s ` T ) ( F ` B ) ) ) |
| 57 |
56
|
fveq2d |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( M ` ( F ` ( r .x. B ) ) ) = ( M ` ( r ( .s ` T ) ( F ` B ) ) ) ) |
| 58 |
25
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> T e. NrmMod ) |
| 59 |
|
eqid |
|- ( Scalar ` T ) = ( Scalar ` T ) |
| 60 |
5 59
|
lmhmsca |
|- ( F e. ( S LMHom T ) -> ( Scalar ` T ) = G ) |
| 61 |
50 60
|
syl |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( Scalar ` T ) = G ) |
| 62 |
61
|
fveq2d |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( Base ` ( Scalar ` T ) ) = ( Base ` G ) ) |
| 63 |
62 6
|
eqtr4di |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( Base ` ( Scalar ` T ) ) = K ) |
| 64 |
52 63
|
eleqtrrd |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> r e. ( Base ` ( Scalar ` T ) ) ) |
| 65 |
31
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( F ` B ) e. ( Base ` T ) ) |
| 66 |
|
eqid |
|- ( Base ` ( Scalar ` T ) ) = ( Base ` ( Scalar ` T ) ) |
| 67 |
|
eqid |
|- ( norm ` ( Scalar ` T ) ) = ( norm ` ( Scalar ` T ) ) |
| 68 |
28 4 54 59 66 67
|
nmvs |
|- ( ( T e. NrmMod /\ r e. ( Base ` ( Scalar ` T ) ) /\ ( F ` B ) e. ( Base ` T ) ) -> ( M ` ( r ( .s ` T ) ( F ` B ) ) ) = ( ( ( norm ` ( Scalar ` T ) ) ` r ) x. ( M ` ( F ` B ) ) ) ) |
| 69 |
58 64 65 68
|
syl3anc |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( M ` ( r ( .s ` T ) ( F ` B ) ) ) = ( ( ( norm ` ( Scalar ` T ) ) ` r ) x. ( M ` ( F ` B ) ) ) ) |
| 70 |
61
|
fveq2d |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( norm ` ( Scalar ` T ) ) = ( norm ` G ) ) |
| 71 |
70
|
fveq1d |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( norm ` ( Scalar ` T ) ) ` r ) = ( ( norm ` G ) ` r ) ) |
| 72 |
7
|
elin2d |
|- ( ph -> S e. CMod ) |
| 73 |
72
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> S e. CMod ) |
| 74 |
5 6
|
clmabs |
|- ( ( S e. CMod /\ r e. K ) -> ( abs ` r ) = ( ( norm ` G ) ` r ) ) |
| 75 |
73 52 74
|
syl2anc |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( abs ` r ) = ( ( norm ` G ) ` r ) ) |
| 76 |
|
0red |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> 0 e. RR ) |
| 77 |
11
|
rpge0d |
|- ( ph -> 0 <_ R ) |
| 78 |
14 23 15 77
|
mulge0d |
|- ( ph -> 0 <_ ( A x. R ) ) |
| 79 |
|
divge0 |
|- ( ( ( ( A x. R ) e. RR /\ 0 <_ ( A x. R ) ) /\ ( ( M ` ( F ` B ) ) e. RR /\ 0 < ( M ` ( F ` B ) ) ) ) -> 0 <_ ( ( A x. R ) / ( M ` ( F ` B ) ) ) ) |
| 80 |
24 78 33 46 79
|
syl22anc |
|- ( ph -> 0 <_ ( ( A x. R ) / ( M ` ( F ` B ) ) ) ) |
| 81 |
80
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> 0 <_ ( ( A x. R ) / ( M ` ( F ` B ) ) ) ) |
| 82 |
76 49 22 81 20
|
lelttrd |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> 0 < r ) |
| 83 |
76 22 82
|
ltled |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> 0 <_ r ) |
| 84 |
22 83
|
absidd |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( abs ` r ) = r ) |
| 85 |
75 84
|
eqtr3d |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( norm ` G ) ` r ) = r ) |
| 86 |
71 85
|
eqtrd |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( norm ` ( Scalar ` T ) ) ` r ) = r ) |
| 87 |
86
|
oveq1d |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( ( norm ` ( Scalar ` T ) ) ` r ) x. ( M ` ( F ` B ) ) ) = ( r x. ( M ` ( F ` B ) ) ) ) |
| 88 |
57 69 87
|
3eqtrd |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( M ` ( F ` ( r .x. B ) ) ) = ( r x. ( M ` ( F ` B ) ) ) ) |
| 89 |
88
|
oveq1d |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( M ` ( F ` ( r .x. B ) ) ) / R ) = ( ( r x. ( M ` ( F ` B ) ) ) / R ) ) |
| 90 |
2 5 13 6
|
clmvscl |
|- ( ( S e. CMod /\ r e. K /\ B e. V ) -> ( r .x. B ) e. V ) |
| 91 |
73 52 53 90
|
syl3anc |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( r .x. B ) e. V ) |
| 92 |
35
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> S e. NrmMod ) |
| 93 |
|
eqid |
|- ( norm ` G ) = ( norm ` G ) |
| 94 |
2 3 13 5 6 93
|
nmvs |
|- ( ( S e. NrmMod /\ r e. K /\ B e. V ) -> ( L ` ( r .x. B ) ) = ( ( ( norm ` G ) ` r ) x. ( L ` B ) ) ) |
| 95 |
92 52 53 94
|
syl3anc |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( L ` ( r .x. B ) ) = ( ( ( norm ` G ) ` r ) x. ( L ` B ) ) ) |
| 96 |
85
|
oveq1d |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( ( norm ` G ) ` r ) x. ( L ` B ) ) = ( r x. ( L ` B ) ) ) |
| 97 |
95 96
|
eqtrd |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( L ` ( r .x. B ) ) = ( r x. ( L ` B ) ) ) |
| 98 |
|
simprr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> r < ( R / ( L ` B ) ) ) |
| 99 |
23
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> R e. RR ) |
| 100 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
| 101 |
2 3 100
|
nmrpcl |
|- ( ( S e. NrmGrp /\ B e. V /\ B =/= ( 0g ` S ) ) -> ( L ` B ) e. RR+ ) |
| 102 |
37 16 17 101
|
syl3anc |
|- ( ph -> ( L ` B ) e. RR+ ) |
| 103 |
102
|
rpregt0d |
|- ( ph -> ( ( L ` B ) e. RR /\ 0 < ( L ` B ) ) ) |
| 104 |
103
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( L ` B ) e. RR /\ 0 < ( L ` B ) ) ) |
| 105 |
|
ltmuldiv |
|- ( ( r e. RR /\ R e. RR /\ ( ( L ` B ) e. RR /\ 0 < ( L ` B ) ) ) -> ( ( r x. ( L ` B ) ) < R <-> r < ( R / ( L ` B ) ) ) ) |
| 106 |
22 99 104 105
|
syl3anc |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( r x. ( L ` B ) ) < R <-> r < ( R / ( L ` B ) ) ) ) |
| 107 |
98 106
|
mpbird |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( r x. ( L ` B ) ) < R ) |
| 108 |
97 107
|
eqbrtrd |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( L ` ( r .x. B ) ) < R ) |
| 109 |
18
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( r .x. B ) e. V -> ( ( L ` ( r .x. B ) ) < R -> ( ( M ` ( F ` ( r .x. B ) ) ) / R ) <_ A ) ) ) |
| 110 |
91 108 109
|
mp2d |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( M ` ( F ` ( r .x. B ) ) ) / R ) <_ A ) |
| 111 |
89 110
|
eqbrtrrd |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( r x. ( M ` ( F ` B ) ) ) / R ) <_ A ) |
| 112 |
33
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( M ` ( F ` B ) ) e. RR ) |
| 113 |
22 112
|
remulcld |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( r x. ( M ` ( F ` B ) ) ) e. RR ) |
| 114 |
14
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> A e. RR ) |
| 115 |
11
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> R e. RR+ ) |
| 116 |
113 114 115
|
ledivmul2d |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( ( r x. ( M ` ( F ` B ) ) ) / R ) <_ A <-> ( r x. ( M ` ( F ` B ) ) ) <_ ( A x. R ) ) ) |
| 117 |
111 116
|
mpbid |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( r x. ( M ` ( F ` B ) ) ) <_ ( A x. R ) ) |
| 118 |
114 99
|
remulcld |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( A x. R ) e. RR ) |
| 119 |
33 46
|
jca |
|- ( ph -> ( ( M ` ( F ` B ) ) e. RR /\ 0 < ( M ` ( F ` B ) ) ) ) |
| 120 |
119
|
ad2antrr |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( M ` ( F ` B ) ) e. RR /\ 0 < ( M ` ( F ` B ) ) ) ) |
| 121 |
|
lemuldiv |
|- ( ( r e. RR /\ ( A x. R ) e. RR /\ ( ( M ` ( F ` B ) ) e. RR /\ 0 < ( M ` ( F ` B ) ) ) ) -> ( ( r x. ( M ` ( F ` B ) ) ) <_ ( A x. R ) <-> r <_ ( ( A x. R ) / ( M ` ( F ` B ) ) ) ) ) |
| 122 |
22 118 120 121
|
syl3anc |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( r x. ( M ` ( F ` B ) ) ) <_ ( A x. R ) <-> r <_ ( ( A x. R ) / ( M ` ( F ` B ) ) ) ) ) |
| 123 |
117 122
|
mpbid |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> r <_ ( ( A x. R ) / ( M ` ( F ` B ) ) ) ) |
| 124 |
22 49 123
|
lensymd |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> -. ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r ) |
| 125 |
20 124
|
pm2.21dd |
|- ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( M ` ( F ` B ) ) <_ ( A x. ( L ` B ) ) ) |
| 126 |
23 102
|
rerpdivcld |
|- ( ph -> ( R / ( L ` B ) ) e. RR ) |
| 127 |
14
|
recnd |
|- ( ph -> A e. CC ) |
| 128 |
23
|
recnd |
|- ( ph -> R e. CC ) |
| 129 |
39
|
recnd |
|- ( ph -> ( L ` B ) e. CC ) |
| 130 |
|
mulass |
|- ( ( A e. CC /\ R e. CC /\ ( L ` B ) e. CC ) -> ( ( A x. R ) x. ( L ` B ) ) = ( A x. ( R x. ( L ` B ) ) ) ) |
| 131 |
|
mul12 |
|- ( ( A e. CC /\ R e. CC /\ ( L ` B ) e. CC ) -> ( A x. ( R x. ( L ` B ) ) ) = ( R x. ( A x. ( L ` B ) ) ) ) |
| 132 |
130 131
|
eqtrd |
|- ( ( A e. CC /\ R e. CC /\ ( L ` B ) e. CC ) -> ( ( A x. R ) x. ( L ` B ) ) = ( R x. ( A x. ( L ` B ) ) ) ) |
| 133 |
127 128 129 132
|
syl3anc |
|- ( ph -> ( ( A x. R ) x. ( L ` B ) ) = ( R x. ( A x. ( L ` B ) ) ) ) |
| 134 |
40 33 11 45
|
ltmul2dd |
|- ( ph -> ( R x. ( A x. ( L ` B ) ) ) < ( R x. ( M ` ( F ` B ) ) ) ) |
| 135 |
133 134
|
eqbrtrd |
|- ( ph -> ( ( A x. R ) x. ( L ` B ) ) < ( R x. ( M ` ( F ` B ) ) ) ) |
| 136 |
|
lt2mul2div |
|- ( ( ( ( A x. R ) e. RR /\ ( ( L ` B ) e. RR /\ 0 < ( L ` B ) ) ) /\ ( R e. RR /\ ( ( M ` ( F ` B ) ) e. RR /\ 0 < ( M ` ( F ` B ) ) ) ) ) -> ( ( ( A x. R ) x. ( L ` B ) ) < ( R x. ( M ` ( F ` B ) ) ) <-> ( ( A x. R ) / ( M ` ( F ` B ) ) ) < ( R / ( L ` B ) ) ) ) |
| 137 |
24 103 23 119 136
|
syl22anc |
|- ( ph -> ( ( ( A x. R ) x. ( L ` B ) ) < ( R x. ( M ` ( F ` B ) ) ) <-> ( ( A x. R ) / ( M ` ( F ` B ) ) ) < ( R / ( L ` B ) ) ) ) |
| 138 |
135 137
|
mpbid |
|- ( ph -> ( ( A x. R ) / ( M ` ( F ` B ) ) ) < ( R / ( L ` B ) ) ) |
| 139 |
|
qbtwnre |
|- ( ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) e. RR /\ ( R / ( L ` B ) ) e. RR /\ ( ( A x. R ) / ( M ` ( F ` B ) ) ) < ( R / ( L ` B ) ) ) -> E. r e. QQ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) |
| 140 |
48 126 138 139
|
syl3anc |
|- ( ph -> E. r e. QQ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) |
| 141 |
125 140
|
r19.29a |
|- ( ph -> ( M ` ( F ` B ) ) <_ ( A x. ( L ` B ) ) ) |
| 142 |
141 19
|
pm2.65i |
|- -. ph |