| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmoleub2.n |  |-  N = ( S normOp T ) | 
						
							| 2 |  | nmoleub2.v |  |-  V = ( Base ` S ) | 
						
							| 3 |  | nmoleub2.l |  |-  L = ( norm ` S ) | 
						
							| 4 |  | nmoleub2.m |  |-  M = ( norm ` T ) | 
						
							| 5 |  | nmoleub2.g |  |-  G = ( Scalar ` S ) | 
						
							| 6 |  | nmoleub2.w |  |-  K = ( Base ` G ) | 
						
							| 7 |  | nmoleub2.s |  |-  ( ph -> S e. ( NrmMod i^i CMod ) ) | 
						
							| 8 |  | nmoleub2.t |  |-  ( ph -> T e. ( NrmMod i^i CMod ) ) | 
						
							| 9 |  | nmoleub2.f |  |-  ( ph -> F e. ( S LMHom T ) ) | 
						
							| 10 |  | nmoleub2.a |  |-  ( ph -> A e. RR* ) | 
						
							| 11 |  | nmoleub2.r |  |-  ( ph -> R e. RR+ ) | 
						
							| 12 |  | nmoleub2a.5 |  |-  ( ph -> QQ C_ K ) | 
						
							| 13 |  | nmoleub2lem3.p |  |-  .x. = ( .s ` S ) | 
						
							| 14 |  | nmoleub2lem3.1 |  |-  ( ph -> A e. RR ) | 
						
							| 15 |  | nmoleub2lem3.2 |  |-  ( ph -> 0 <_ A ) | 
						
							| 16 |  | nmoleub2lem3.3 |  |-  ( ph -> B e. V ) | 
						
							| 17 |  | nmoleub2lem3.4 |  |-  ( ph -> B =/= ( 0g ` S ) ) | 
						
							| 18 |  | nmoleub2lem3.5 |  |-  ( ph -> ( ( r .x. B ) e. V -> ( ( L ` ( r .x. B ) ) < R -> ( ( M ` ( F ` ( r .x. B ) ) ) / R ) <_ A ) ) ) | 
						
							| 19 |  | nmoleub2lem3.6 |  |-  ( ph -> -. ( M ` ( F ` B ) ) <_ ( A x. ( L ` B ) ) ) | 
						
							| 20 |  | simprl |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r ) | 
						
							| 21 |  | qre |  |-  ( r e. QQ -> r e. RR ) | 
						
							| 22 | 21 | ad2antlr |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> r e. RR ) | 
						
							| 23 | 11 | rpred |  |-  ( ph -> R e. RR ) | 
						
							| 24 | 14 23 | remulcld |  |-  ( ph -> ( A x. R ) e. RR ) | 
						
							| 25 | 8 | elin1d |  |-  ( ph -> T e. NrmMod ) | 
						
							| 26 |  | nlmngp |  |-  ( T e. NrmMod -> T e. NrmGrp ) | 
						
							| 27 | 25 26 | syl |  |-  ( ph -> T e. NrmGrp ) | 
						
							| 28 |  | eqid |  |-  ( Base ` T ) = ( Base ` T ) | 
						
							| 29 | 2 28 | lmhmf |  |-  ( F e. ( S LMHom T ) -> F : V --> ( Base ` T ) ) | 
						
							| 30 | 9 29 | syl |  |-  ( ph -> F : V --> ( Base ` T ) ) | 
						
							| 31 | 30 16 | ffvelcdmd |  |-  ( ph -> ( F ` B ) e. ( Base ` T ) ) | 
						
							| 32 | 28 4 | nmcl |  |-  ( ( T e. NrmGrp /\ ( F ` B ) e. ( Base ` T ) ) -> ( M ` ( F ` B ) ) e. RR ) | 
						
							| 33 | 27 31 32 | syl2anc |  |-  ( ph -> ( M ` ( F ` B ) ) e. RR ) | 
						
							| 34 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 35 | 7 | elin1d |  |-  ( ph -> S e. NrmMod ) | 
						
							| 36 |  | nlmngp |  |-  ( S e. NrmMod -> S e. NrmGrp ) | 
						
							| 37 | 35 36 | syl |  |-  ( ph -> S e. NrmGrp ) | 
						
							| 38 | 2 3 | nmcl |  |-  ( ( S e. NrmGrp /\ B e. V ) -> ( L ` B ) e. RR ) | 
						
							| 39 | 37 16 38 | syl2anc |  |-  ( ph -> ( L ` B ) e. RR ) | 
						
							| 40 | 14 39 | remulcld |  |-  ( ph -> ( A x. ( L ` B ) ) e. RR ) | 
						
							| 41 | 2 3 | nmge0 |  |-  ( ( S e. NrmGrp /\ B e. V ) -> 0 <_ ( L ` B ) ) | 
						
							| 42 | 37 16 41 | syl2anc |  |-  ( ph -> 0 <_ ( L ` B ) ) | 
						
							| 43 | 14 39 15 42 | mulge0d |  |-  ( ph -> 0 <_ ( A x. ( L ` B ) ) ) | 
						
							| 44 | 40 33 | ltnled |  |-  ( ph -> ( ( A x. ( L ` B ) ) < ( M ` ( F ` B ) ) <-> -. ( M ` ( F ` B ) ) <_ ( A x. ( L ` B ) ) ) ) | 
						
							| 45 | 19 44 | mpbird |  |-  ( ph -> ( A x. ( L ` B ) ) < ( M ` ( F ` B ) ) ) | 
						
							| 46 | 34 40 33 43 45 | lelttrd |  |-  ( ph -> 0 < ( M ` ( F ` B ) ) ) | 
						
							| 47 | 33 46 | elrpd |  |-  ( ph -> ( M ` ( F ` B ) ) e. RR+ ) | 
						
							| 48 | 24 47 | rerpdivcld |  |-  ( ph -> ( ( A x. R ) / ( M ` ( F ` B ) ) ) e. RR ) | 
						
							| 49 | 48 | ad2antrr |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( A x. R ) / ( M ` ( F ` B ) ) ) e. RR ) | 
						
							| 50 | 9 | ad2antrr |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> F e. ( S LMHom T ) ) | 
						
							| 51 | 12 | sselda |  |-  ( ( ph /\ r e. QQ ) -> r e. K ) | 
						
							| 52 | 51 | adantr |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> r e. K ) | 
						
							| 53 | 16 | ad2antrr |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> B e. V ) | 
						
							| 54 |  | eqid |  |-  ( .s ` T ) = ( .s ` T ) | 
						
							| 55 | 5 6 2 13 54 | lmhmlin |  |-  ( ( F e. ( S LMHom T ) /\ r e. K /\ B e. V ) -> ( F ` ( r .x. B ) ) = ( r ( .s ` T ) ( F ` B ) ) ) | 
						
							| 56 | 50 52 53 55 | syl3anc |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( F ` ( r .x. B ) ) = ( r ( .s ` T ) ( F ` B ) ) ) | 
						
							| 57 | 56 | fveq2d |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( M ` ( F ` ( r .x. B ) ) ) = ( M ` ( r ( .s ` T ) ( F ` B ) ) ) ) | 
						
							| 58 | 25 | ad2antrr |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> T e. NrmMod ) | 
						
							| 59 |  | eqid |  |-  ( Scalar ` T ) = ( Scalar ` T ) | 
						
							| 60 | 5 59 | lmhmsca |  |-  ( F e. ( S LMHom T ) -> ( Scalar ` T ) = G ) | 
						
							| 61 | 50 60 | syl |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( Scalar ` T ) = G ) | 
						
							| 62 | 61 | fveq2d |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( Base ` ( Scalar ` T ) ) = ( Base ` G ) ) | 
						
							| 63 | 62 6 | eqtr4di |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( Base ` ( Scalar ` T ) ) = K ) | 
						
							| 64 | 52 63 | eleqtrrd |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> r e. ( Base ` ( Scalar ` T ) ) ) | 
						
							| 65 | 31 | ad2antrr |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( F ` B ) e. ( Base ` T ) ) | 
						
							| 66 |  | eqid |  |-  ( Base ` ( Scalar ` T ) ) = ( Base ` ( Scalar ` T ) ) | 
						
							| 67 |  | eqid |  |-  ( norm ` ( Scalar ` T ) ) = ( norm ` ( Scalar ` T ) ) | 
						
							| 68 | 28 4 54 59 66 67 | nmvs |  |-  ( ( T e. NrmMod /\ r e. ( Base ` ( Scalar ` T ) ) /\ ( F ` B ) e. ( Base ` T ) ) -> ( M ` ( r ( .s ` T ) ( F ` B ) ) ) = ( ( ( norm ` ( Scalar ` T ) ) ` r ) x. ( M ` ( F ` B ) ) ) ) | 
						
							| 69 | 58 64 65 68 | syl3anc |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( M ` ( r ( .s ` T ) ( F ` B ) ) ) = ( ( ( norm ` ( Scalar ` T ) ) ` r ) x. ( M ` ( F ` B ) ) ) ) | 
						
							| 70 | 61 | fveq2d |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( norm ` ( Scalar ` T ) ) = ( norm ` G ) ) | 
						
							| 71 | 70 | fveq1d |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( norm ` ( Scalar ` T ) ) ` r ) = ( ( norm ` G ) ` r ) ) | 
						
							| 72 | 7 | elin2d |  |-  ( ph -> S e. CMod ) | 
						
							| 73 | 72 | ad2antrr |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> S e. CMod ) | 
						
							| 74 | 5 6 | clmabs |  |-  ( ( S e. CMod /\ r e. K ) -> ( abs ` r ) = ( ( norm ` G ) ` r ) ) | 
						
							| 75 | 73 52 74 | syl2anc |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( abs ` r ) = ( ( norm ` G ) ` r ) ) | 
						
							| 76 |  | 0red |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> 0 e. RR ) | 
						
							| 77 | 11 | rpge0d |  |-  ( ph -> 0 <_ R ) | 
						
							| 78 | 14 23 15 77 | mulge0d |  |-  ( ph -> 0 <_ ( A x. R ) ) | 
						
							| 79 |  | divge0 |  |-  ( ( ( ( A x. R ) e. RR /\ 0 <_ ( A x. R ) ) /\ ( ( M ` ( F ` B ) ) e. RR /\ 0 < ( M ` ( F ` B ) ) ) ) -> 0 <_ ( ( A x. R ) / ( M ` ( F ` B ) ) ) ) | 
						
							| 80 | 24 78 33 46 79 | syl22anc |  |-  ( ph -> 0 <_ ( ( A x. R ) / ( M ` ( F ` B ) ) ) ) | 
						
							| 81 | 80 | ad2antrr |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> 0 <_ ( ( A x. R ) / ( M ` ( F ` B ) ) ) ) | 
						
							| 82 | 76 49 22 81 20 | lelttrd |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> 0 < r ) | 
						
							| 83 | 76 22 82 | ltled |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> 0 <_ r ) | 
						
							| 84 | 22 83 | absidd |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( abs ` r ) = r ) | 
						
							| 85 | 75 84 | eqtr3d |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( norm ` G ) ` r ) = r ) | 
						
							| 86 | 71 85 | eqtrd |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( norm ` ( Scalar ` T ) ) ` r ) = r ) | 
						
							| 87 | 86 | oveq1d |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( ( norm ` ( Scalar ` T ) ) ` r ) x. ( M ` ( F ` B ) ) ) = ( r x. ( M ` ( F ` B ) ) ) ) | 
						
							| 88 | 57 69 87 | 3eqtrd |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( M ` ( F ` ( r .x. B ) ) ) = ( r x. ( M ` ( F ` B ) ) ) ) | 
						
							| 89 | 88 | oveq1d |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( M ` ( F ` ( r .x. B ) ) ) / R ) = ( ( r x. ( M ` ( F ` B ) ) ) / R ) ) | 
						
							| 90 | 2 5 13 6 | clmvscl |  |-  ( ( S e. CMod /\ r e. K /\ B e. V ) -> ( r .x. B ) e. V ) | 
						
							| 91 | 73 52 53 90 | syl3anc |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( r .x. B ) e. V ) | 
						
							| 92 | 35 | ad2antrr |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> S e. NrmMod ) | 
						
							| 93 |  | eqid |  |-  ( norm ` G ) = ( norm ` G ) | 
						
							| 94 | 2 3 13 5 6 93 | nmvs |  |-  ( ( S e. NrmMod /\ r e. K /\ B e. V ) -> ( L ` ( r .x. B ) ) = ( ( ( norm ` G ) ` r ) x. ( L ` B ) ) ) | 
						
							| 95 | 92 52 53 94 | syl3anc |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( L ` ( r .x. B ) ) = ( ( ( norm ` G ) ` r ) x. ( L ` B ) ) ) | 
						
							| 96 | 85 | oveq1d |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( ( norm ` G ) ` r ) x. ( L ` B ) ) = ( r x. ( L ` B ) ) ) | 
						
							| 97 | 95 96 | eqtrd |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( L ` ( r .x. B ) ) = ( r x. ( L ` B ) ) ) | 
						
							| 98 |  | simprr |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> r < ( R / ( L ` B ) ) ) | 
						
							| 99 | 23 | ad2antrr |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> R e. RR ) | 
						
							| 100 |  | eqid |  |-  ( 0g ` S ) = ( 0g ` S ) | 
						
							| 101 | 2 3 100 | nmrpcl |  |-  ( ( S e. NrmGrp /\ B e. V /\ B =/= ( 0g ` S ) ) -> ( L ` B ) e. RR+ ) | 
						
							| 102 | 37 16 17 101 | syl3anc |  |-  ( ph -> ( L ` B ) e. RR+ ) | 
						
							| 103 | 102 | rpregt0d |  |-  ( ph -> ( ( L ` B ) e. RR /\ 0 < ( L ` B ) ) ) | 
						
							| 104 | 103 | ad2antrr |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( L ` B ) e. RR /\ 0 < ( L ` B ) ) ) | 
						
							| 105 |  | ltmuldiv |  |-  ( ( r e. RR /\ R e. RR /\ ( ( L ` B ) e. RR /\ 0 < ( L ` B ) ) ) -> ( ( r x. ( L ` B ) ) < R <-> r < ( R / ( L ` B ) ) ) ) | 
						
							| 106 | 22 99 104 105 | syl3anc |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( r x. ( L ` B ) ) < R <-> r < ( R / ( L ` B ) ) ) ) | 
						
							| 107 | 98 106 | mpbird |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( r x. ( L ` B ) ) < R ) | 
						
							| 108 | 97 107 | eqbrtrd |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( L ` ( r .x. B ) ) < R ) | 
						
							| 109 | 18 | ad2antrr |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( r .x. B ) e. V -> ( ( L ` ( r .x. B ) ) < R -> ( ( M ` ( F ` ( r .x. B ) ) ) / R ) <_ A ) ) ) | 
						
							| 110 | 91 108 109 | mp2d |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( M ` ( F ` ( r .x. B ) ) ) / R ) <_ A ) | 
						
							| 111 | 89 110 | eqbrtrrd |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( r x. ( M ` ( F ` B ) ) ) / R ) <_ A ) | 
						
							| 112 | 33 | ad2antrr |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( M ` ( F ` B ) ) e. RR ) | 
						
							| 113 | 22 112 | remulcld |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( r x. ( M ` ( F ` B ) ) ) e. RR ) | 
						
							| 114 | 14 | ad2antrr |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> A e. RR ) | 
						
							| 115 | 11 | ad2antrr |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> R e. RR+ ) | 
						
							| 116 | 113 114 115 | ledivmul2d |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( ( r x. ( M ` ( F ` B ) ) ) / R ) <_ A <-> ( r x. ( M ` ( F ` B ) ) ) <_ ( A x. R ) ) ) | 
						
							| 117 | 111 116 | mpbid |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( r x. ( M ` ( F ` B ) ) ) <_ ( A x. R ) ) | 
						
							| 118 | 114 99 | remulcld |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( A x. R ) e. RR ) | 
						
							| 119 | 33 46 | jca |  |-  ( ph -> ( ( M ` ( F ` B ) ) e. RR /\ 0 < ( M ` ( F ` B ) ) ) ) | 
						
							| 120 | 119 | ad2antrr |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( M ` ( F ` B ) ) e. RR /\ 0 < ( M ` ( F ` B ) ) ) ) | 
						
							| 121 |  | lemuldiv |  |-  ( ( r e. RR /\ ( A x. R ) e. RR /\ ( ( M ` ( F ` B ) ) e. RR /\ 0 < ( M ` ( F ` B ) ) ) ) -> ( ( r x. ( M ` ( F ` B ) ) ) <_ ( A x. R ) <-> r <_ ( ( A x. R ) / ( M ` ( F ` B ) ) ) ) ) | 
						
							| 122 | 22 118 120 121 | syl3anc |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( ( r x. ( M ` ( F ` B ) ) ) <_ ( A x. R ) <-> r <_ ( ( A x. R ) / ( M ` ( F ` B ) ) ) ) ) | 
						
							| 123 | 117 122 | mpbid |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> r <_ ( ( A x. R ) / ( M ` ( F ` B ) ) ) ) | 
						
							| 124 | 22 49 123 | lensymd |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> -. ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r ) | 
						
							| 125 | 20 124 | pm2.21dd |  |-  ( ( ( ph /\ r e. QQ ) /\ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) -> ( M ` ( F ` B ) ) <_ ( A x. ( L ` B ) ) ) | 
						
							| 126 | 23 102 | rerpdivcld |  |-  ( ph -> ( R / ( L ` B ) ) e. RR ) | 
						
							| 127 | 14 | recnd |  |-  ( ph -> A e. CC ) | 
						
							| 128 | 23 | recnd |  |-  ( ph -> R e. CC ) | 
						
							| 129 | 39 | recnd |  |-  ( ph -> ( L ` B ) e. CC ) | 
						
							| 130 |  | mulass |  |-  ( ( A e. CC /\ R e. CC /\ ( L ` B ) e. CC ) -> ( ( A x. R ) x. ( L ` B ) ) = ( A x. ( R x. ( L ` B ) ) ) ) | 
						
							| 131 |  | mul12 |  |-  ( ( A e. CC /\ R e. CC /\ ( L ` B ) e. CC ) -> ( A x. ( R x. ( L ` B ) ) ) = ( R x. ( A x. ( L ` B ) ) ) ) | 
						
							| 132 | 130 131 | eqtrd |  |-  ( ( A e. CC /\ R e. CC /\ ( L ` B ) e. CC ) -> ( ( A x. R ) x. ( L ` B ) ) = ( R x. ( A x. ( L ` B ) ) ) ) | 
						
							| 133 | 127 128 129 132 | syl3anc |  |-  ( ph -> ( ( A x. R ) x. ( L ` B ) ) = ( R x. ( A x. ( L ` B ) ) ) ) | 
						
							| 134 | 40 33 11 45 | ltmul2dd |  |-  ( ph -> ( R x. ( A x. ( L ` B ) ) ) < ( R x. ( M ` ( F ` B ) ) ) ) | 
						
							| 135 | 133 134 | eqbrtrd |  |-  ( ph -> ( ( A x. R ) x. ( L ` B ) ) < ( R x. ( M ` ( F ` B ) ) ) ) | 
						
							| 136 |  | lt2mul2div |  |-  ( ( ( ( A x. R ) e. RR /\ ( ( L ` B ) e. RR /\ 0 < ( L ` B ) ) ) /\ ( R e. RR /\ ( ( M ` ( F ` B ) ) e. RR /\ 0 < ( M ` ( F ` B ) ) ) ) ) -> ( ( ( A x. R ) x. ( L ` B ) ) < ( R x. ( M ` ( F ` B ) ) ) <-> ( ( A x. R ) / ( M ` ( F ` B ) ) ) < ( R / ( L ` B ) ) ) ) | 
						
							| 137 | 24 103 23 119 136 | syl22anc |  |-  ( ph -> ( ( ( A x. R ) x. ( L ` B ) ) < ( R x. ( M ` ( F ` B ) ) ) <-> ( ( A x. R ) / ( M ` ( F ` B ) ) ) < ( R / ( L ` B ) ) ) ) | 
						
							| 138 | 135 137 | mpbid |  |-  ( ph -> ( ( A x. R ) / ( M ` ( F ` B ) ) ) < ( R / ( L ` B ) ) ) | 
						
							| 139 |  | qbtwnre |  |-  ( ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) e. RR /\ ( R / ( L ` B ) ) e. RR /\ ( ( A x. R ) / ( M ` ( F ` B ) ) ) < ( R / ( L ` B ) ) ) -> E. r e. QQ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) | 
						
							| 140 | 48 126 138 139 | syl3anc |  |-  ( ph -> E. r e. QQ ( ( ( A x. R ) / ( M ` ( F ` B ) ) ) < r /\ r < ( R / ( L ` B ) ) ) ) | 
						
							| 141 | 125 140 | r19.29a |  |-  ( ph -> ( M ` ( F ` B ) ) <_ ( A x. ( L ` B ) ) ) | 
						
							| 142 | 141 19 | pm2.65i |  |-  -. ph |