| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmoleub2.n |  |-  N = ( S normOp T ) | 
						
							| 2 |  | nmoleub2.v |  |-  V = ( Base ` S ) | 
						
							| 3 |  | nmoleub2.l |  |-  L = ( norm ` S ) | 
						
							| 4 |  | nmoleub2.m |  |-  M = ( norm ` T ) | 
						
							| 5 |  | nmoleub2.g |  |-  G = ( Scalar ` S ) | 
						
							| 6 |  | nmoleub2.w |  |-  K = ( Base ` G ) | 
						
							| 7 |  | nmoleub2.s |  |-  ( ph -> S e. ( NrmMod i^i CMod ) ) | 
						
							| 8 |  | nmoleub2.t |  |-  ( ph -> T e. ( NrmMod i^i CMod ) ) | 
						
							| 9 |  | nmoleub2.f |  |-  ( ph -> F e. ( S LMHom T ) ) | 
						
							| 10 |  | nmoleub2.a |  |-  ( ph -> A e. RR* ) | 
						
							| 11 |  | nmoleub2.r |  |-  ( ph -> R e. RR+ ) | 
						
							| 12 |  | nmoleub2a.5 |  |-  ( ph -> QQ C_ K ) | 
						
							| 13 |  | nmoleub2lem2.6 |  |-  ( ( ( L ` x ) e. RR /\ R e. RR ) -> ( ( L ` x ) O R -> ( L ` x ) <_ R ) ) | 
						
							| 14 |  | nmoleub2lem2.7 |  |-  ( ( ( L ` x ) e. RR /\ R e. RR ) -> ( ( L ` x ) < R -> ( L ` x ) O R ) ) | 
						
							| 15 |  | lmghm |  |-  ( F e. ( S LMHom T ) -> F e. ( S GrpHom T ) ) | 
						
							| 16 |  | eqid |  |-  ( 0g ` S ) = ( 0g ` S ) | 
						
							| 17 |  | eqid |  |-  ( 0g ` T ) = ( 0g ` T ) | 
						
							| 18 | 16 17 | ghmid |  |-  ( F e. ( S GrpHom T ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) | 
						
							| 19 | 9 15 18 | 3syl |  |-  ( ph -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) | 
						
							| 20 | 19 | fveq2d |  |-  ( ph -> ( M ` ( F ` ( 0g ` S ) ) ) = ( M ` ( 0g ` T ) ) ) | 
						
							| 21 | 8 | elin1d |  |-  ( ph -> T e. NrmMod ) | 
						
							| 22 |  | nlmngp |  |-  ( T e. NrmMod -> T e. NrmGrp ) | 
						
							| 23 | 4 17 | nm0 |  |-  ( T e. NrmGrp -> ( M ` ( 0g ` T ) ) = 0 ) | 
						
							| 24 | 21 22 23 | 3syl |  |-  ( ph -> ( M ` ( 0g ` T ) ) = 0 ) | 
						
							| 25 | 20 24 | eqtrd |  |-  ( ph -> ( M ` ( F ` ( 0g ` S ) ) ) = 0 ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) -> ( M ` ( F ` ( 0g ` S ) ) ) = 0 ) | 
						
							| 27 | 26 | oveq1d |  |-  ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) -> ( ( M ` ( F ` ( 0g ` S ) ) ) / R ) = ( 0 / R ) ) | 
						
							| 28 | 11 | adantr |  |-  ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) -> R e. RR+ ) | 
						
							| 29 | 28 | rpcnd |  |-  ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) -> R e. CC ) | 
						
							| 30 | 28 | rpne0d |  |-  ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) -> R =/= 0 ) | 
						
							| 31 | 29 30 | div0d |  |-  ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) -> ( 0 / R ) = 0 ) | 
						
							| 32 | 27 31 | eqtrd |  |-  ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) -> ( ( M ` ( F ` ( 0g ` S ) ) ) / R ) = 0 ) | 
						
							| 33 | 7 | elin1d |  |-  ( ph -> S e. NrmMod ) | 
						
							| 34 |  | nlmngp |  |-  ( S e. NrmMod -> S e. NrmGrp ) | 
						
							| 35 | 3 16 | nm0 |  |-  ( S e. NrmGrp -> ( L ` ( 0g ` S ) ) = 0 ) | 
						
							| 36 | 33 34 35 | 3syl |  |-  ( ph -> ( L ` ( 0g ` S ) ) = 0 ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) -> ( L ` ( 0g ` S ) ) = 0 ) | 
						
							| 38 | 28 | rpgt0d |  |-  ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) -> 0 < R ) | 
						
							| 39 | 37 38 | eqbrtrd |  |-  ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) -> ( L ` ( 0g ` S ) ) < R ) | 
						
							| 40 |  | fveq2 |  |-  ( x = ( 0g ` S ) -> ( L ` x ) = ( L ` ( 0g ` S ) ) ) | 
						
							| 41 | 40 | breq1d |  |-  ( x = ( 0g ` S ) -> ( ( L ` x ) < R <-> ( L ` ( 0g ` S ) ) < R ) ) | 
						
							| 42 |  | 2fveq3 |  |-  ( x = ( 0g ` S ) -> ( M ` ( F ` x ) ) = ( M ` ( F ` ( 0g ` S ) ) ) ) | 
						
							| 43 | 42 | oveq1d |  |-  ( x = ( 0g ` S ) -> ( ( M ` ( F ` x ) ) / R ) = ( ( M ` ( F ` ( 0g ` S ) ) ) / R ) ) | 
						
							| 44 | 43 | breq1d |  |-  ( x = ( 0g ` S ) -> ( ( ( M ` ( F ` x ) ) / R ) <_ A <-> ( ( M ` ( F ` ( 0g ` S ) ) ) / R ) <_ A ) ) | 
						
							| 45 | 41 44 | imbi12d |  |-  ( x = ( 0g ` S ) -> ( ( ( L ` x ) < R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) <-> ( ( L ` ( 0g ` S ) ) < R -> ( ( M ` ( F ` ( 0g ` S ) ) ) / R ) <_ A ) ) ) | 
						
							| 46 | 33 34 | syl |  |-  ( ph -> S e. NrmGrp ) | 
						
							| 47 | 2 3 | nmcl |  |-  ( ( S e. NrmGrp /\ x e. V ) -> ( L ` x ) e. RR ) | 
						
							| 48 | 46 47 | sylan |  |-  ( ( ph /\ x e. V ) -> ( L ` x ) e. RR ) | 
						
							| 49 | 11 | adantr |  |-  ( ( ph /\ x e. V ) -> R e. RR+ ) | 
						
							| 50 | 49 | rpred |  |-  ( ( ph /\ x e. V ) -> R e. RR ) | 
						
							| 51 | 48 50 14 | syl2anc |  |-  ( ( ph /\ x e. V ) -> ( ( L ` x ) < R -> ( L ` x ) O R ) ) | 
						
							| 52 | 51 | imim1d |  |-  ( ( ph /\ x e. V ) -> ( ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) -> ( ( L ` x ) < R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) ) | 
						
							| 53 | 52 | ralimdva |  |-  ( ph -> ( A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) -> A. x e. V ( ( L ` x ) < R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) ) | 
						
							| 54 | 53 | imp |  |-  ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) -> A. x e. V ( ( L ` x ) < R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) | 
						
							| 55 |  | ngpgrp |  |-  ( S e. NrmGrp -> S e. Grp ) | 
						
							| 56 | 2 16 | grpidcl |  |-  ( S e. Grp -> ( 0g ` S ) e. V ) | 
						
							| 57 | 46 55 56 | 3syl |  |-  ( ph -> ( 0g ` S ) e. V ) | 
						
							| 58 | 57 | adantr |  |-  ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) -> ( 0g ` S ) e. V ) | 
						
							| 59 | 45 54 58 | rspcdva |  |-  ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) -> ( ( L ` ( 0g ` S ) ) < R -> ( ( M ` ( F ` ( 0g ` S ) ) ) / R ) <_ A ) ) | 
						
							| 60 | 39 59 | mpd |  |-  ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) -> ( ( M ` ( F ` ( 0g ` S ) ) ) / R ) <_ A ) | 
						
							| 61 | 32 60 | eqbrtrrd |  |-  ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) -> 0 <_ A ) | 
						
							| 62 |  | simp-4l |  |-  ( ( ( ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) /\ A e. RR ) /\ ( y e. V /\ y =/= ( 0g ` S ) ) ) /\ -. ( M ` ( F ` y ) ) <_ ( A x. ( L ` y ) ) ) -> ph ) | 
						
							| 63 | 62 7 | syl |  |-  ( ( ( ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) /\ A e. RR ) /\ ( y e. V /\ y =/= ( 0g ` S ) ) ) /\ -. ( M ` ( F ` y ) ) <_ ( A x. ( L ` y ) ) ) -> S e. ( NrmMod i^i CMod ) ) | 
						
							| 64 | 62 8 | syl |  |-  ( ( ( ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) /\ A e. RR ) /\ ( y e. V /\ y =/= ( 0g ` S ) ) ) /\ -. ( M ` ( F ` y ) ) <_ ( A x. ( L ` y ) ) ) -> T e. ( NrmMod i^i CMod ) ) | 
						
							| 65 | 62 9 | syl |  |-  ( ( ( ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) /\ A e. RR ) /\ ( y e. V /\ y =/= ( 0g ` S ) ) ) /\ -. ( M ` ( F ` y ) ) <_ ( A x. ( L ` y ) ) ) -> F e. ( S LMHom T ) ) | 
						
							| 66 | 62 10 | syl |  |-  ( ( ( ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) /\ A e. RR ) /\ ( y e. V /\ y =/= ( 0g ` S ) ) ) /\ -. ( M ` ( F ` y ) ) <_ ( A x. ( L ` y ) ) ) -> A e. RR* ) | 
						
							| 67 | 62 11 | syl |  |-  ( ( ( ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) /\ A e. RR ) /\ ( y e. V /\ y =/= ( 0g ` S ) ) ) /\ -. ( M ` ( F ` y ) ) <_ ( A x. ( L ` y ) ) ) -> R e. RR+ ) | 
						
							| 68 | 62 12 | syl |  |-  ( ( ( ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) /\ A e. RR ) /\ ( y e. V /\ y =/= ( 0g ` S ) ) ) /\ -. ( M ` ( F ` y ) ) <_ ( A x. ( L ` y ) ) ) -> QQ C_ K ) | 
						
							| 69 |  | eqid |  |-  ( .s ` S ) = ( .s ` S ) | 
						
							| 70 |  | simpllr |  |-  ( ( ( ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) /\ A e. RR ) /\ ( y e. V /\ y =/= ( 0g ` S ) ) ) /\ -. ( M ` ( F ` y ) ) <_ ( A x. ( L ` y ) ) ) -> A e. RR ) | 
						
							| 71 | 61 | ad3antrrr |  |-  ( ( ( ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) /\ A e. RR ) /\ ( y e. V /\ y =/= ( 0g ` S ) ) ) /\ -. ( M ` ( F ` y ) ) <_ ( A x. ( L ` y ) ) ) -> 0 <_ A ) | 
						
							| 72 |  | simplrl |  |-  ( ( ( ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) /\ A e. RR ) /\ ( y e. V /\ y =/= ( 0g ` S ) ) ) /\ -. ( M ` ( F ` y ) ) <_ ( A x. ( L ` y ) ) ) -> y e. V ) | 
						
							| 73 |  | simplrr |  |-  ( ( ( ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) /\ A e. RR ) /\ ( y e. V /\ y =/= ( 0g ` S ) ) ) /\ -. ( M ` ( F ` y ) ) <_ ( A x. ( L ` y ) ) ) -> y =/= ( 0g ` S ) ) | 
						
							| 74 | 54 | ad3antrrr |  |-  ( ( ( ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) /\ A e. RR ) /\ ( y e. V /\ y =/= ( 0g ` S ) ) ) /\ -. ( M ` ( F ` y ) ) <_ ( A x. ( L ` y ) ) ) -> A. x e. V ( ( L ` x ) < R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) | 
						
							| 75 |  | fveq2 |  |-  ( x = ( z ( .s ` S ) y ) -> ( L ` x ) = ( L ` ( z ( .s ` S ) y ) ) ) | 
						
							| 76 | 75 | breq1d |  |-  ( x = ( z ( .s ` S ) y ) -> ( ( L ` x ) < R <-> ( L ` ( z ( .s ` S ) y ) ) < R ) ) | 
						
							| 77 |  | 2fveq3 |  |-  ( x = ( z ( .s ` S ) y ) -> ( M ` ( F ` x ) ) = ( M ` ( F ` ( z ( .s ` S ) y ) ) ) ) | 
						
							| 78 | 77 | oveq1d |  |-  ( x = ( z ( .s ` S ) y ) -> ( ( M ` ( F ` x ) ) / R ) = ( ( M ` ( F ` ( z ( .s ` S ) y ) ) ) / R ) ) | 
						
							| 79 | 78 | breq1d |  |-  ( x = ( z ( .s ` S ) y ) -> ( ( ( M ` ( F ` x ) ) / R ) <_ A <-> ( ( M ` ( F ` ( z ( .s ` S ) y ) ) ) / R ) <_ A ) ) | 
						
							| 80 | 76 79 | imbi12d |  |-  ( x = ( z ( .s ` S ) y ) -> ( ( ( L ` x ) < R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) <-> ( ( L ` ( z ( .s ` S ) y ) ) < R -> ( ( M ` ( F ` ( z ( .s ` S ) y ) ) ) / R ) <_ A ) ) ) | 
						
							| 81 | 80 | rspccv |  |-  ( A. x e. V ( ( L ` x ) < R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) -> ( ( z ( .s ` S ) y ) e. V -> ( ( L ` ( z ( .s ` S ) y ) ) < R -> ( ( M ` ( F ` ( z ( .s ` S ) y ) ) ) / R ) <_ A ) ) ) | 
						
							| 82 | 74 81 | syl |  |-  ( ( ( ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) /\ A e. RR ) /\ ( y e. V /\ y =/= ( 0g ` S ) ) ) /\ -. ( M ` ( F ` y ) ) <_ ( A x. ( L ` y ) ) ) -> ( ( z ( .s ` S ) y ) e. V -> ( ( L ` ( z ( .s ` S ) y ) ) < R -> ( ( M ` ( F ` ( z ( .s ` S ) y ) ) ) / R ) <_ A ) ) ) | 
						
							| 83 |  | simpr |  |-  ( ( ( ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) /\ A e. RR ) /\ ( y e. V /\ y =/= ( 0g ` S ) ) ) /\ -. ( M ` ( F ` y ) ) <_ ( A x. ( L ` y ) ) ) -> -. ( M ` ( F ` y ) ) <_ ( A x. ( L ` y ) ) ) | 
						
							| 84 | 1 2 3 4 5 6 63 64 65 66 67 68 69 70 71 72 73 82 83 | nmoleub2lem3 |  |-  -. ( ( ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) /\ A e. RR ) /\ ( y e. V /\ y =/= ( 0g ` S ) ) ) /\ -. ( M ` ( F ` y ) ) <_ ( A x. ( L ` y ) ) ) | 
						
							| 85 |  | iman |  |-  ( ( ( ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) /\ A e. RR ) /\ ( y e. V /\ y =/= ( 0g ` S ) ) ) -> ( M ` ( F ` y ) ) <_ ( A x. ( L ` y ) ) ) <-> -. ( ( ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) /\ A e. RR ) /\ ( y e. V /\ y =/= ( 0g ` S ) ) ) /\ -. ( M ` ( F ` y ) ) <_ ( A x. ( L ` y ) ) ) ) | 
						
							| 86 | 84 85 | mpbir |  |-  ( ( ( ( ph /\ A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) /\ A e. RR ) /\ ( y e. V /\ y =/= ( 0g ` S ) ) ) -> ( M ` ( F ` y ) ) <_ ( A x. ( L ` y ) ) ) | 
						
							| 87 | 48 50 13 | syl2anc |  |-  ( ( ph /\ x e. V ) -> ( ( L ` x ) O R -> ( L ` x ) <_ R ) ) | 
						
							| 88 | 1 2 3 4 5 6 7 8 9 10 11 61 86 87 | nmoleub2lem |  |-  ( ph -> ( ( N ` F ) <_ A <-> A. x e. V ( ( L ` x ) O R -> ( ( M ` ( F ` x ) ) / R ) <_ A ) ) ) |