Metamath Proof Explorer


Theorem clmvscl

Description: Closure of scalar product for a subcomplex module. Analogue of lmodvscl . (Contributed by NM, 3-Nov-2006) (Revised by AV, 28-Sep-2021)

Ref Expression
Hypotheses clmvscl.v V=BaseW
clmvscl.f F=ScalarW
clmvscl.s ·˙=W
clmvscl.k K=BaseF
Assertion clmvscl WCModQKXVQ·˙XV

Proof

Step Hyp Ref Expression
1 clmvscl.v V=BaseW
2 clmvscl.f F=ScalarW
3 clmvscl.s ·˙=W
4 clmvscl.k K=BaseF
5 clmlmod WCModWLMod
6 1 2 3 4 lmodvscl WLModQKXVQ·˙XV
7 5 6 syl3an1 WCModQKXVQ·˙XV