Metamath Proof Explorer


Theorem nmopsetretALT

Description: The set in the supremum of the operator norm definition df-nmop is a set of reals. (Contributed by NM, 2-Feb-2006) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion nmopsetretALT ( 𝑇 : ℋ ⟶ ℋ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( 𝑇𝑦 ) ) ) } ⊆ ℝ )

Proof

Step Hyp Ref Expression
1 ffvelrn ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇𝑦 ) ∈ ℋ )
2 normcl ( ( 𝑇𝑦 ) ∈ ℋ → ( norm ‘ ( 𝑇𝑦 ) ) ∈ ℝ )
3 1 2 syl ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( norm ‘ ( 𝑇𝑦 ) ) ∈ ℝ )
4 eleq1 ( 𝑥 = ( norm ‘ ( 𝑇𝑦 ) ) → ( 𝑥 ∈ ℝ ↔ ( norm ‘ ( 𝑇𝑦 ) ) ∈ ℝ ) )
5 3 4 syl5ibr ( 𝑥 = ( norm ‘ ( 𝑇𝑦 ) ) → ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → 𝑥 ∈ ℝ ) )
6 5 impcom ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ∧ 𝑥 = ( norm ‘ ( 𝑇𝑦 ) ) ) → 𝑥 ∈ ℝ )
7 6 adantrl ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( 𝑇𝑦 ) ) ) ) → 𝑥 ∈ ℝ )
8 7 exp31 ( 𝑇 : ℋ ⟶ ℋ → ( 𝑦 ∈ ℋ → ( ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( 𝑇𝑦 ) ) ) → 𝑥 ∈ ℝ ) ) )
9 8 rexlimdv ( 𝑇 : ℋ ⟶ ℋ → ( ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( 𝑇𝑦 ) ) ) → 𝑥 ∈ ℝ ) )
10 9 abssdv ( 𝑇 : ℋ ⟶ ℋ → { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( norm𝑦 ) ≤ 1 ∧ 𝑥 = ( norm ‘ ( 𝑇𝑦 ) ) ) } ⊆ ℝ )