Description: Closure law for rising factorial. (Contributed by Scott Fenton, 5-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0risefaccl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 RiseFac 𝑁 ) ∈ ℕ0 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nn0sscn | ⊢ ℕ0 ⊆ ℂ | |
| 2 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 3 | nn0mulcl | ⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 · 𝑦 ) ∈ ℕ0 ) | |
| 4 | nn0addcl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 + 𝑘 ) ∈ ℕ0 ) | |
| 5 | 1 2 3 4 | risefaccllem | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 RiseFac 𝑁 ) ∈ ℕ0 ) |