| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpssre | ⊢ ℝ+  ⊆  ℝ | 
						
							| 2 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 3 | 1 2 | sstri | ⊢ ℝ+  ⊆  ℂ | 
						
							| 4 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 5 |  | rpmulcl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ+ )  →  ( 𝑥  ·  𝑦 )  ∈  ℝ+ ) | 
						
							| 6 |  | rpre | ⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ∈  ℝ ) | 
						
							| 7 |  | nn0re | ⊢ ( 𝑘  ∈  ℕ0  →  𝑘  ∈  ℝ ) | 
						
							| 8 |  | readdcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝑘  ∈  ℝ )  →  ( 𝐴  +  𝑘 )  ∈  ℝ ) | 
						
							| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴  +  𝑘 )  ∈  ℝ ) | 
						
							| 10 | 6 | adantr | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑘  ∈  ℕ0 )  →  𝐴  ∈  ℝ ) | 
						
							| 11 | 7 | adantl | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℝ ) | 
						
							| 12 |  | rpgt0 | ⊢ ( 𝐴  ∈  ℝ+  →  0  <  𝐴 ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑘  ∈  ℕ0 )  →  0  <  𝐴 ) | 
						
							| 14 |  | nn0ge0 | ⊢ ( 𝑘  ∈  ℕ0  →  0  ≤  𝑘 ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑘  ∈  ℕ0 )  →  0  ≤  𝑘 ) | 
						
							| 16 | 10 11 13 15 | addgtge0d | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑘  ∈  ℕ0 )  →  0  <  ( 𝐴  +  𝑘 ) ) | 
						
							| 17 | 9 16 | elrpd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴  +  𝑘 )  ∈  ℝ+ ) | 
						
							| 18 | 3 4 5 17 | risefaccllem | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝑁  ∈  ℕ0 )  →  ( 𝐴  RiseFac  𝑁 )  ∈  ℝ+ ) |