Metamath Proof Explorer


Theorem rprisefaccl

Description: Closure law for rising factorial. (Contributed by Scott Fenton, 9-Jan-2018)

Ref Expression
Assertion rprisefaccl A+N0AN+

Proof

Step Hyp Ref Expression
1 rpssre +
2 ax-resscn
3 1 2 sstri +
4 1rp 1+
5 rpmulcl x+y+xy+
6 rpre A+A
7 nn0re k0k
8 readdcl AkA+k
9 6 7 8 syl2an A+k0A+k
10 6 adantr A+k0A
11 7 adantl A+k0k
12 rpgt0 A+0<A
13 12 adantr A+k00<A
14 nn0ge0 k00k
15 14 adantl A+k00k
16 10 11 13 15 addgtge0d A+k00<A+k
17 9 16 elrpd A+k0A+k+
18 3 4 5 17 risefaccllem A+N0AN+