| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 2 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 3 | 1 2 | sstri |  |-  RR+ C_ CC | 
						
							| 4 |  | 1rp |  |-  1 e. RR+ | 
						
							| 5 |  | rpmulcl |  |-  ( ( x e. RR+ /\ y e. RR+ ) -> ( x x. y ) e. RR+ ) | 
						
							| 6 |  | rpre |  |-  ( A e. RR+ -> A e. RR ) | 
						
							| 7 |  | nn0re |  |-  ( k e. NN0 -> k e. RR ) | 
						
							| 8 |  | readdcl |  |-  ( ( A e. RR /\ k e. RR ) -> ( A + k ) e. RR ) | 
						
							| 9 | 6 7 8 | syl2an |  |-  ( ( A e. RR+ /\ k e. NN0 ) -> ( A + k ) e. RR ) | 
						
							| 10 | 6 | adantr |  |-  ( ( A e. RR+ /\ k e. NN0 ) -> A e. RR ) | 
						
							| 11 | 7 | adantl |  |-  ( ( A e. RR+ /\ k e. NN0 ) -> k e. RR ) | 
						
							| 12 |  | rpgt0 |  |-  ( A e. RR+ -> 0 < A ) | 
						
							| 13 | 12 | adantr |  |-  ( ( A e. RR+ /\ k e. NN0 ) -> 0 < A ) | 
						
							| 14 |  | nn0ge0 |  |-  ( k e. NN0 -> 0 <_ k ) | 
						
							| 15 | 14 | adantl |  |-  ( ( A e. RR+ /\ k e. NN0 ) -> 0 <_ k ) | 
						
							| 16 | 10 11 13 15 | addgtge0d |  |-  ( ( A e. RR+ /\ k e. NN0 ) -> 0 < ( A + k ) ) | 
						
							| 17 | 9 16 | elrpd |  |-  ( ( A e. RR+ /\ k e. NN0 ) -> ( A + k ) e. RR+ ) | 
						
							| 18 | 3 4 5 17 | risefaccllem |  |-  ( ( A e. RR+ /\ N e. NN0 ) -> ( A RiseFac N ) e. RR+ ) |