| Step |
Hyp |
Ref |
Expression |
| 1 |
|
risefallfaccllem.1 |
|- S C_ CC |
| 2 |
|
risefallfaccllem.2 |
|- 1 e. S |
| 3 |
|
risefallfaccllem.3 |
|- ( ( x e. S /\ y e. S ) -> ( x x. y ) e. S ) |
| 4 |
|
risefaccllem.4 |
|- ( ( A e. S /\ k e. NN0 ) -> ( A + k ) e. S ) |
| 5 |
1
|
sseli |
|- ( A e. S -> A e. CC ) |
| 6 |
|
risefacval |
|- ( ( A e. CC /\ N e. NN0 ) -> ( A RiseFac N ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( A + k ) ) |
| 7 |
5 6
|
sylan |
|- ( ( A e. S /\ N e. NN0 ) -> ( A RiseFac N ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( A + k ) ) |
| 8 |
1
|
a1i |
|- ( A e. S -> S C_ CC ) |
| 9 |
3
|
adantl |
|- ( ( A e. S /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
| 10 |
|
fzfid |
|- ( A e. S -> ( 0 ... ( N - 1 ) ) e. Fin ) |
| 11 |
|
elfznn0 |
|- ( k e. ( 0 ... ( N - 1 ) ) -> k e. NN0 ) |
| 12 |
11 4
|
sylan2 |
|- ( ( A e. S /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( A + k ) e. S ) |
| 13 |
2
|
a1i |
|- ( A e. S -> 1 e. S ) |
| 14 |
8 9 10 12 13
|
fprodcllem |
|- ( A e. S -> prod_ k e. ( 0 ... ( N - 1 ) ) ( A + k ) e. S ) |
| 15 |
14
|
adantr |
|- ( ( A e. S /\ N e. NN0 ) -> prod_ k e. ( 0 ... ( N - 1 ) ) ( A + k ) e. S ) |
| 16 |
7 15
|
eqeltrd |
|- ( ( A e. S /\ N e. NN0 ) -> ( A RiseFac N ) e. S ) |