Step |
Hyp |
Ref |
Expression |
1 |
|
risefallfaccllem.1 |
|- S C_ CC |
2 |
|
risefallfaccllem.2 |
|- 1 e. S |
3 |
|
risefallfaccllem.3 |
|- ( ( x e. S /\ y e. S ) -> ( x x. y ) e. S ) |
4 |
|
fallfaccllem.4 |
|- ( ( A e. S /\ k e. NN0 ) -> ( A - k ) e. S ) |
5 |
1
|
sseli |
|- ( A e. S -> A e. CC ) |
6 |
|
fallfacval |
|- ( ( A e. CC /\ N e. NN0 ) -> ( A FallFac N ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) ) |
7 |
5 6
|
sylan |
|- ( ( A e. S /\ N e. NN0 ) -> ( A FallFac N ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) ) |
8 |
1
|
a1i |
|- ( A e. S -> S C_ CC ) |
9 |
3
|
adantl |
|- ( ( A e. S /\ ( x e. S /\ y e. S ) ) -> ( x x. y ) e. S ) |
10 |
|
fzfid |
|- ( A e. S -> ( 0 ... ( N - 1 ) ) e. Fin ) |
11 |
|
elfznn0 |
|- ( k e. ( 0 ... ( N - 1 ) ) -> k e. NN0 ) |
12 |
11 4
|
sylan2 |
|- ( ( A e. S /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( A - k ) e. S ) |
13 |
2
|
a1i |
|- ( A e. S -> 1 e. S ) |
14 |
8 9 10 12 13
|
fprodcllem |
|- ( A e. S -> prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) e. S ) |
15 |
14
|
adantr |
|- ( ( A e. S /\ N e. NN0 ) -> prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) e. S ) |
16 |
7 15
|
eqeltrd |
|- ( ( A e. S /\ N e. NN0 ) -> ( A FallFac N ) e. S ) |