Metamath Proof Explorer


Theorem nn0sub2

Description: Subtraction of nonnegative integers. (Contributed by NM, 4-Sep-2005)

Ref Expression
Assertion nn0sub2 ( ( 𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁 ) → ( 𝑁𝑀 ) ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 nn0sub ( ( 𝑀 ∈ ℕ0𝑁 ∈ ℕ0 ) → ( 𝑀𝑁 ↔ ( 𝑁𝑀 ) ∈ ℕ0 ) )
2 1 biimp3a ( ( 𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁 ) → ( 𝑁𝑀 ) ∈ ℕ0 )