Metamath Proof Explorer


Theorem nndivdvdsd

Description: A positive integer divides a natural number if and only if the quotient is a positive integer, a deduction version of nndivdvds . (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses nndivdvdsd.1 ( 𝜑𝑀 ∈ ℕ )
nndivdvdsd.2 ( 𝜑𝑁 ∈ ℕ )
Assertion nndivdvdsd ( 𝜑 → ( 𝑀𝑁 ↔ ( 𝑁 / 𝑀 ) ∈ ℕ ) )

Proof

Step Hyp Ref Expression
1 nndivdvdsd.1 ( 𝜑𝑀 ∈ ℕ )
2 nndivdvdsd.2 ( 𝜑𝑁 ∈ ℕ )
3 nndivdvds ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ) → ( 𝑀𝑁 ↔ ( 𝑁 / 𝑀 ) ∈ ℕ ) )
4 2 1 3 syl2anc ( 𝜑 → ( 𝑀𝑁 ↔ ( 𝑁 / 𝑀 ) ∈ ℕ ) )