Metamath Proof Explorer


Theorem nndivdvdsd

Description: A positive integer divides a natural number if and only if the quotient is a positive integer, a deduction version of nndivdvds . (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses nndivdvdsd.1
|- ( ph -> M e. NN )
nndivdvdsd.2
|- ( ph -> N e. NN )
Assertion nndivdvdsd
|- ( ph -> ( M || N <-> ( N / M ) e. NN ) )

Proof

Step Hyp Ref Expression
1 nndivdvdsd.1
 |-  ( ph -> M e. NN )
2 nndivdvdsd.2
 |-  ( ph -> N e. NN )
3 nndivdvds
 |-  ( ( N e. NN /\ M e. NN ) -> ( M || N <-> ( N / M ) e. NN ) )
4 2 1 3 syl2anc
 |-  ( ph -> ( M || N <-> ( N / M ) e. NN ) )