Step |
Hyp |
Ref |
Expression |
1 |
|
nnproddivdvdsd.1 |
|- ( ph -> K e. NN ) |
2 |
|
nnproddivdvdsd.2 |
|- ( ph -> M e. NN ) |
3 |
|
nnproddivdvdsd.3 |
|- ( ph -> N e. NN ) |
4 |
3
|
nncnd |
|- ( ph -> N e. CC ) |
5 |
4
|
adantr |
|- ( ( ph /\ ( K x. M ) || N ) -> N e. CC ) |
6 |
1
|
nncnd |
|- ( ph -> K e. CC ) |
7 |
6
|
adantr |
|- ( ( ph /\ ( K x. M ) || N ) -> K e. CC ) |
8 |
2
|
nncnd |
|- ( ph -> M e. CC ) |
9 |
8
|
adantr |
|- ( ( ph /\ ( K x. M ) || N ) -> M e. CC ) |
10 |
1
|
adantr |
|- ( ( ph /\ ( K x. M ) || N ) -> K e. NN ) |
11 |
|
nnne0 |
|- ( K e. NN -> K =/= 0 ) |
12 |
10 11
|
syl |
|- ( ( ph /\ ( K x. M ) || N ) -> K =/= 0 ) |
13 |
2
|
adantr |
|- ( ( ph /\ ( K x. M ) || N ) -> M e. NN ) |
14 |
13
|
nnne0d |
|- ( ( ph /\ ( K x. M ) || N ) -> M =/= 0 ) |
15 |
5 7 9 12 14
|
divdiv1d |
|- ( ( ph /\ ( K x. M ) || N ) -> ( ( N / K ) / M ) = ( N / ( K x. M ) ) ) |
16 |
15
|
eqcomd |
|- ( ( ph /\ ( K x. M ) || N ) -> ( N / ( K x. M ) ) = ( ( N / K ) / M ) ) |
17 |
5 7 9 12 14
|
divdiv32d |
|- ( ( ph /\ ( K x. M ) || N ) -> ( ( N / K ) / M ) = ( ( N / M ) / K ) ) |
18 |
16 17
|
eqtrd |
|- ( ( ph /\ ( K x. M ) || N ) -> ( N / ( K x. M ) ) = ( ( N / M ) / K ) ) |
19 |
1 2
|
nnmulcld |
|- ( ph -> ( K x. M ) e. NN ) |
20 |
19 3
|
nndivdvdsd |
|- ( ph -> ( ( K x. M ) || N <-> ( N / ( K x. M ) ) e. NN ) ) |
21 |
20
|
biimpd |
|- ( ph -> ( ( K x. M ) || N -> ( N / ( K x. M ) ) e. NN ) ) |
22 |
21
|
imp |
|- ( ( ph /\ ( K x. M ) || N ) -> ( N / ( K x. M ) ) e. NN ) |
23 |
18 22
|
eqeltrrd |
|- ( ( ph /\ ( K x. M ) || N ) -> ( ( N / M ) / K ) e. NN ) |
24 |
1
|
nnzd |
|- ( ph -> K e. ZZ ) |
25 |
2
|
nnzd |
|- ( ph -> M e. ZZ ) |
26 |
3
|
nnzd |
|- ( ph -> N e. ZZ ) |
27 |
24 25 26
|
3jca |
|- ( ph -> ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) ) |
28 |
|
muldvds2 |
|- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) || N -> M || N ) ) |
29 |
27 28
|
syl |
|- ( ph -> ( ( K x. M ) || N -> M || N ) ) |
30 |
29
|
imp |
|- ( ( ph /\ ( K x. M ) || N ) -> M || N ) |
31 |
3
|
adantr |
|- ( ( ph /\ ( K x. M ) || N ) -> N e. NN ) |
32 |
13 31
|
nndivdvdsd |
|- ( ( ph /\ ( K x. M ) || N ) -> ( M || N <-> ( N / M ) e. NN ) ) |
33 |
30 32
|
mpbid |
|- ( ( ph /\ ( K x. M ) || N ) -> ( N / M ) e. NN ) |
34 |
10 33
|
nndivdvdsd |
|- ( ( ph /\ ( K x. M ) || N ) -> ( K || ( N / M ) <-> ( ( N / M ) / K ) e. NN ) ) |
35 |
23 34
|
mpbird |
|- ( ( ph /\ ( K x. M ) || N ) -> K || ( N / M ) ) |
36 |
35
|
ex |
|- ( ph -> ( ( K x. M ) || N -> K || ( N / M ) ) ) |
37 |
|
dvdszrcl |
|- ( K || ( N / M ) -> ( K e. ZZ /\ ( N / M ) e. ZZ ) ) |
38 |
37
|
simprd |
|- ( K || ( N / M ) -> ( N / M ) e. ZZ ) |
39 |
38
|
adantl |
|- ( ( ph /\ K || ( N / M ) ) -> ( N / M ) e. ZZ ) |
40 |
|
dvdsmulc |
|- ( ( K e. ZZ /\ ( N / M ) e. ZZ /\ M e. ZZ ) -> ( K || ( N / M ) -> ( K x. M ) || ( ( N / M ) x. M ) ) ) |
41 |
24 40
|
syl3an1 |
|- ( ( ph /\ ( N / M ) e. ZZ /\ M e. ZZ ) -> ( K || ( N / M ) -> ( K x. M ) || ( ( N / M ) x. M ) ) ) |
42 |
25 41
|
syl3an3 |
|- ( ( ph /\ ( N / M ) e. ZZ /\ ph ) -> ( K || ( N / M ) -> ( K x. M ) || ( ( N / M ) x. M ) ) ) |
43 |
42
|
3anidm13 |
|- ( ( ph /\ ( N / M ) e. ZZ ) -> ( K || ( N / M ) -> ( K x. M ) || ( ( N / M ) x. M ) ) ) |
44 |
43
|
impancom |
|- ( ( ph /\ K || ( N / M ) ) -> ( ( N / M ) e. ZZ -> ( K x. M ) || ( ( N / M ) x. M ) ) ) |
45 |
39 44
|
mpd |
|- ( ( ph /\ K || ( N / M ) ) -> ( K x. M ) || ( ( N / M ) x. M ) ) |
46 |
2
|
nnne0d |
|- ( ph -> M =/= 0 ) |
47 |
4 8 46
|
divcan1d |
|- ( ph -> ( ( N / M ) x. M ) = N ) |
48 |
47
|
adantr |
|- ( ( ph /\ K || ( N / M ) ) -> ( ( N / M ) x. M ) = N ) |
49 |
45 48
|
breqtrd |
|- ( ( ph /\ K || ( N / M ) ) -> ( K x. M ) || N ) |
50 |
49
|
ex |
|- ( ph -> ( K || ( N / M ) -> ( K x. M ) || N ) ) |
51 |
36 50
|
impbid |
|- ( ph -> ( ( K x. M ) || N <-> K || ( N / M ) ) ) |