Metamath Proof Explorer


Theorem nnproddivdvdsd

Description: A product of natural numbers divides a natural number if and only if a factor divides the quotient, a deduction version. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses nnproddivdvdsd.1 φ K
nnproddivdvdsd.2 φ M
nnproddivdvdsd.3 φ N
Assertion nnproddivdvdsd φ K M N K N M

Proof

Step Hyp Ref Expression
1 nnproddivdvdsd.1 φ K
2 nnproddivdvdsd.2 φ M
3 nnproddivdvdsd.3 φ N
4 3 nncnd φ N
5 4 adantr φ K M N N
6 1 nncnd φ K
7 6 adantr φ K M N K
8 2 nncnd φ M
9 8 adantr φ K M N M
10 1 adantr φ K M N K
11 nnne0 K K 0
12 10 11 syl φ K M N K 0
13 2 adantr φ K M N M
14 13 nnne0d φ K M N M 0
15 5 7 9 12 14 divdiv1d φ K M N N K M = N K M
16 15 eqcomd φ K M N N K M = N K M
17 5 7 9 12 14 divdiv32d φ K M N N K M = N M K
18 16 17 eqtrd φ K M N N K M = N M K
19 1 2 nnmulcld φ K M
20 19 3 nndivdvdsd φ K M N N K M
21 20 biimpd φ K M N N K M
22 21 imp φ K M N N K M
23 18 22 eqeltrrd φ K M N N M K
24 1 nnzd φ K
25 2 nnzd φ M
26 3 nnzd φ N
27 24 25 26 3jca φ K M N
28 muldvds2 K M N K M N M N
29 27 28 syl φ K M N M N
30 29 imp φ K M N M N
31 3 adantr φ K M N N
32 13 31 nndivdvdsd φ K M N M N N M
33 30 32 mpbid φ K M N N M
34 10 33 nndivdvdsd φ K M N K N M N M K
35 23 34 mpbird φ K M N K N M
36 35 ex φ K M N K N M
37 dvdszrcl K N M K N M
38 37 simprd K N M N M
39 38 adantl φ K N M N M
40 dvdsmulc K N M M K N M K M N M M
41 24 40 syl3an1 φ N M M K N M K M N M M
42 25 41 syl3an3 φ N M φ K N M K M N M M
43 42 3anidm13 φ N M K N M K M N M M
44 43 impancom φ K N M N M K M N M M
45 39 44 mpd φ K N M K M N M M
46 2 nnne0d φ M 0
47 4 8 46 divcan1d φ N M M = N
48 47 adantr φ K N M N M M = N
49 45 48 breqtrd φ K N M K M N
50 49 ex φ K N M K M N
51 36 50 impbid φ K M N K N M