Description: Closure law for rising factorial. (Contributed by Scott Fenton, 5-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnrisefaccl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 RiseFac 𝑁 ) ∈ ℕ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nnsscn | ⊢ ℕ ⊆ ℂ | |
| 2 | 1nn | ⊢ 1 ∈ ℕ | |
| 3 | nnmulcl | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 · 𝑦 ) ∈ ℕ ) | |
| 4 | nnnn0addcl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 + 𝑘 ) ∈ ℕ ) | |
| 5 | 1 2 3 4 | risefaccllem | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 RiseFac 𝑁 ) ∈ ℕ ) |