Description: Closure law for rising factorial. (Contributed by Scott Fenton, 5-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zrisefaccl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 RiseFac 𝑁 ) ∈ ℤ ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zsscn | ⊢ ℤ ⊆ ℂ | |
| 2 | 1z | ⊢ 1 ∈ ℤ | |
| 3 | zmulcl | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 · 𝑦 ) ∈ ℤ ) | |
| 4 | nn0z | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ ) | |
| 5 | zaddcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝐴 + 𝑘 ) ∈ ℤ ) | |
| 6 | 4 5 | sylan2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 + 𝑘 ) ∈ ℤ ) | 
| 7 | 1 2 3 6 | risefaccllem | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 RiseFac 𝑁 ) ∈ ℤ ) |